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parameters that are comparable to those used in the Elta EL/M 2022A(V)3 maritime 
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Statistical Analysis of Northern Australian 
Coastline Sea Clutter Data 

Executive Summary 

The Australian Defence Forces (ADF) are currently in the process of acquiring the 
Israeli built Elta EL/M 2022A(V)3 maritime surveillance radar that will replace the 
existing APS-115 radar under the Project AIR 5276 - P-3C Update Program. The new 
radar system will provide the P-3C with a substantial increase in capabilities in both 
detection and tracking performance and will provide additional target classification 
capabilities based on high resolution range profiling and Synthetic Aperture Radar 
imaging. The increase in capabilities is achieved at the cost of a substantial increase in 
design complexity (compared to the APS-115) including the application of modern 
digital signal processing techniques, novel radar techniques (such as stepped 
frequency waveforms) and the implementation of automatic target detection and 
tracking algorithms. 

In order to develop effective and efficient operating procedures, and to understand the 
strengths and weaknesses of the Elta EL/M 2022A(V)3 maritime surveillance radar 
system against a variety of targets in Australian environmental conditions, it is 
necessary to develop a computer model of the system performance. This model must 
take into account the typical characteristics of the microwave returns from the sea 
surrounding those targets in the area of operation. The right choice of the sea clutter 
model among existing models is critical for the correct system detection performance 
prediction. It must be based on the analysis of sea clutter data that are collected in 
Australian environmental conditions by a radar system with parameters that are 
comparable to those used in the Elta EL/M 2022A(V)3 maritime surveillance radar 
system. 

This report describes the results of detailed statistical analysis of sea clutter data that 
were collected during the ESRL 38/97 trial, which was held off the Northern 
Australian coastline in February 1999 [1, 2]. One of the main trial objectives was to 
contribute to a database of experimentally collected clutter returns with radar system 
parameters that are comparable to those used in the Elta EL/M 2022A(V)3 maritime 
surveillance radar system Anti-Submarine Warfare mode. The validity of the 
compound K-distribution model has been proven for the collected sea clutter data both 
for amplitude and correlation properties. 
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1. Introduction 

The introduction of the Elta EL/M 2022A(V)3 maritime surveillance radar system as 
the principal sensor within the AP-3C weapon system represents a significant step up 
in technology and capabilities when compared to the existing AN/APS-115 radar it is 
replacing. Apart from the considerable improvements in detection performance against 
small targets, the radar also introduces into the AP-3C new capabilities, including 
classification modes, which will require re-evaluation of operating procedures and 
tactics for this platform in order that the new system is deployed effectively. 

In order to develop effective and efficient operating procedures, and to understand the 
strengths and weaknesses of the Elta EL/M 2022A(V)3 maritime surveillance radar 
system against a variety of targets in Australian environmental conditions, it is 
necessary to develop a computer model of the system performance. This model must 
take into account the typical characteristics of the microwave returns from the sea 
surrounding those targets in the area of operation. 

The in-phase and quadrature components of the radar return from the surface of the 
sea collected by low-resolution radars and at grazing angles greater than about 10° are 
usually well modelled by independent Gaussian distributions with the same mean and 
variance. Consequently, the clutter amplitude values for this backscatter are well 
modelled by a Rayleigh distribution. For higher resolution radars and/or low grazing 
angles the clutter is often non-Gaussian. The empirical distribution of the observed 
amplitude returns in these conditions often displays longer tails (higher number of 
large amplitude values) and larger standard deviation-to-mean ratio than those 
predicted for a Rayleigh distributed amplitude. The returns are often described as 
becoming "spiky". 

The right choice of the sea clutter model among the most popular existing models 
(such as Rayleigh, Log-Normal, Weibull and K-distribution) is critical for the correct 
system performance prediction. It must be based on the analysis of sea clutter data that 
are collected in Australian environmental conditions by a radar system with 
parameters that are comparable to those used in the Elta EL/M2022(V)3 maritime 
surveillance radar system. 

This report describes the results of detailed statistical analysis of sea clutter data that 
were collected during trial ESRL 38/97, which was held off the Northern Australian 
coastline in February 1999 [1, 2]. One of the trial's main objectives was to contribute to 
a database of experimentally collected clutter returns with radar system parameters 
that are comparable to those used in the Elta EL/M 2022A(V)3 maritime surveillance 
radar system Anti-Submarine Warfare mode. The validity of the compound K- 
distribution model has been proven for the collected sea clutter data both for 
amplitude and correlation properties. 
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2. Data Collection Procedures and Pre-processing 

2.1 Timetable 
th 

The analysed database consists of sea clutter data, which were collected on the 11 
February 1999 during the maritime radar sea clutter data collection part of trial ESRL 
38/97 that took place off the Northern Australian coastline in three days of February 
1999 (11,15 and 16 February) [1, 2]. 

2.2 Location 

The location of trial ESRL 38/97 was limited to the within reasonable flying distance 
(e.g. radius of 200 n miles) of Darwin, NT, as shown in Figure 1 [1]. The collection of 
sea clutter returns on 11th February was performed approximately 10 nautical miles 
from the Darwin coastline [2]. 

Waterline (1:10M) 
Island Names (1:10M) 
Rivers (1:10M) 
State Borders (1:10M) 
Populated Places (1:10M) 
Principal Roads 
Coastline 

©AUSLIG (Commonwealth of Australia) 1996 

Figure 1: Map of the trial location showing a 200 n miles radius circle centred on Darwin, NT. 

2.3 Airborne Radar 

The system used to gather the data was the Ingara airborne radar system, developed 
by Surveillance Systems Division (SSD), in its maritime surveillance configuration with 
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the vertically polarized elliptical antenna that emulates the antenna used in Elta EL/M 
2022A(V)3 radar. It was installed in a Beech King Air 350 aircraft leased by the 
Australian Army. 

The Lngara radar system operates at X-band (9.150-9.650 GHz) with a peak transmitted 
power of 8 kilowatts and maximum duty cycle of 2%. This system is capable of: 
• Transmitting almost any pulsed waveform (up to 80 (is long) repeatedly. 
• Centring any pulse anywhere within the 400 MHz bandwidth of the system. 
• Analog-to-digital (A/D) sampling with a bandwidth of 100 MHz the in-phase (I) 

and quadrature (Q) components at 8 bits resolution. 

The design of the Stare mode of the lngara radar that was used for the sea clutter data 
collection during the trial has been aimed at producing a generic capability that 
satisfies maritime surveillance mode requirements. In this mode the antenna is kept at 
a constant look angle with respect to the aircraft flight path while the data is collected. 
The operation of the Stare mode is shown in Figure 2. The important system 
parameters common to each sea clutter data collection run are presented in Table 1 [2]. 

Table 1: Main lngara radar system parameters. 

Parameter Radar specification 
Chirp bandwidth 96 MHz 
A/D sample rate 100 MHz 

Range cell resolution 1.5 m 
Pulse width 8^is 

RF centre frequency 9.375 GHz 
PRF 500 Hz 

Antenna azimuth beamwidth 3.8° 
Antenna elevation beamwidth 8° 

Polarization VV 

2.4 Sea State Truthing 

Parameters pertaining to the sea conditions that are deemed essential to support the 
analysis are: 
• The sea state and/or significant wave height, 
• The predominant direction of the waves/swell, 
• The wind speed and direction, and 
• Changes to the sea or wind conditions. 

Due to the lack of any fixed wave buoys in the Northern territory waters, it was 
originally planned that a directional wave buoy would be hired for the period of the 
trial and used to record and log the significant wave height, the sea direction and other 
statistics. 
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INGARA Stare mode 

Transrritted pulse 
96 MHz chirp 

Central Frequency 

f0 = 9.375GHz 

<- 8usec  > 

Sarrple 4096 range bins 
sample ratel 00 N/Hz 

Range cortpfession 
FFT 
*conj(chirp) 
IFFT 
Discard bins 

iiLTimnumE] 

80rrVsec 

Maximjm range 50 km 
Mnirrum range 5 km 

^/    Range extent 3297*1.5m 

Finish with 4096 - (8usec*100 MHz) 

= 3297 compressed range 

Antenna 
Stabilised at 

Fixed angle e 
between 
-100° and 

+10° from 
directly 
forward. 

Range bin size 1m 
Resolution       1.5m 
Data rate 4096* 500Hz * 2 = 4 Jvbytes/second 

Figure 2: Ingara Stare mode parameters and processing used for sea clutter data collection 
during trial ESRL 38/97. 

However, due to the expense of hiring and deploying this equipment, this idea was 
dropped in favour of visual observations. 

Observations were collected from a chartered vessel - the 27-foot recreational fishing 
boat "Savage"- and the aircraft. The boat track during the 11-th February trial is shown 
in Figure 3 [2]. 

Prior to the data collection flight, the Bureau of Meteorology reported a rainstorm in 
the area, which was heading North at about 15 knots. This storm cleared the area in 
time for the aircraft to operate and fly the required patterns. 

The sea conditions were dominated by a long wavelength sea swell moving from 
Northwest, therefore the clutter was modulated by swell. The surface wind, described 
below, superimposed a structure of spray, capillary waves and froth onto the swell. 
Froth patches and spray contributed to the backscatter, and the humidity gradient 
above the surface is expected to affect microwave propagation. Surface wind speed 
measurements were made with a hand-held anemometer. For the duration of 
measurements the wind speed was between 10 and 12 knots, from North West: that is, 
the wind direction was South East 135°, the upwind direction was 315°, all magnetic. 
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Trial 11 Feb 99 
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Figure 3: Boat "Savage" track. 

130.84 130.86 

Long 

30.88 30.9 

Table 2: Sea and wind observation log 11 February 1999 (boat observations). 

Parameter Parameter value 
Sea State Number 2-3 

Wave Height 3-4 m 

Wave Length 15 m 

Wave Period 10-12 sec 

Swell Direction From the NW 

Wind Direction From the NW to SE 

Wind Speed 10-12 knots 

Comments Occasional breaking waves on top of swell 
Froth patches (2x3m) on back of waves 

Wind waves generated by the local wind could be described as belonging to the 
moderate sea - the Sea State was roughly estimated to be between 2 and 3. Table 2 
summarises the sea conditions recorded. 

Table 3 compares the observed values of sea descriptors with those for a fully 
developed sea [3]. Presented fully developed sea descriptors were calculated for the 
range of wind speeds that is equal to the observed range of wind speeds. The 
comparison of the calculated values for fully developed sea descriptors with their 
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observed values reveals that the data were collected for the conditions of non- 
equilibrium sea - the data were collected under conditions of changing wind speed 
before the waves were fully developed. Figures 4 and 5 show photographs of the sea. 

Table 3: Comparison of sea descriptors (11 February). 

Sea Descriptor Equation for the 
Fully Developed 

Sea Value 

Fully Developed 
Sea Value 

Observed 
Value 

Wind Speed U 5.14-6.17 m/sec 5.14 - 6.17m/sec 

Wave Period T = 0.64 U 3.29 - 3.95 sec 10 -12 sec 

Wave Length A = 0.64 U2 16.91 - 24.36 m 15 m 

Root-Mean-Square Height 
above the Mean Surface 

Level 
KMS = 0.005t/2 0.132 - 0.190 m 1.0 -1.33 m 

Significant Wave Height h     - 3/7 riy   _  ~>riRMS 
0.396 - 0.571 m 3-4m 

Figure 4: Pictorial view of swell (11 February 1999). 
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IS 

Figure 5: Breaking waves and typical froth wash-over on the back of wave (11 February 1999). 

2.5 Sea Clutter Data Collection Procedure 

The analysed sea clutter data were collected using the Stare mode with the antenna at 
90° relative to the aircraft flight path. The collection procedure results in data being 
recorded from a strip of the sea surface (Figure 6) [2]. 

The objective was to collect sea clutter returns at different radar (azimuth) beam angles 
with respect to the sea swell (wind direction) as this dependence is very important for 
clarification of the sea clutter model [5,10,16,17]. 

2.6 Data Summary 

The geometry of the data collection runs is presented in Figure 7 - the data were 
collected from a particular region of the sea from different look angles. The summary 
of the collected data is shown in Table 4. The parameters in Table 4 were determined as 
follows: 
1.   Surface range to swath was measured across the Earth surface from directly below 

the aircraft to the start of the swath. 
Averaged values of surface range to swath and the aircraft altitude above the Earth 
surface were calculated as these parameters varied pulse-to-pulse due to the 
deviation of the aircraft from the ideal track. They can be read from the auxiliary 
data exactly for each pulse if required. 
Antenna pointing relative to the swell angle was based on a swell direction 
estimate of 135° (i.e. from the North West). By definition 0° is looking straight into 
swell. The antenna was fixed to point at -90° (i.e. to port side). 

2. 

3. 
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Aircraft track 

Figure 6: Sea clutter collection geometry (Stare mode). 

Run 22882 / Run 22879 
Run 22884 

Run 22885 

Boat heading (70 deg.) 

Run 22881 

s 

Run 22880 

Run 22883 

Run 22886 

Run 22887 

Figure 7: Flight tracks for stare collection of sea clutter 



DSTO-TR-1236 

Table 4: Parameters specific to each run (Stare mode). 

RUN 
ID 

PRF 
(Hz) 

Total 
pulses in 

file 

Number of 
raw and 

range 
compressed 

samples 

Surface 
range 

to 
swath 

(m) 

Aircraft 
altitude 

(m) 

Aircraft 
heading 

Antenna 
pointing 

relative to 
swell 

22879 500 122084 4096 / 3297 7928 182 270° 225° 

22880 500 96573 4096 / 3297 7928 182 135° 90° 

22881 500 108522 4096 / 3297 7928 182 0° 315° 

22882 500 117088 4096 / 3297 7928 182 225° 180° 

22883 500 94970 4096 / 3297 7928 182 90° 45° 

22884 500 117698 4096 / 3297 3928 182 315° 270° 

22885 500 106714 4096 / 3297 13928 182 180° 135° 

22886 500 97327 4096 / 3297 7928 182 45° 0° 

22887 500 - 4096 / 3297 7928 182 45° 0° 

2.7 Data Despoking 

2.7.1  Removal of Radar Frequency Interference from Data 

Data collected in the February '99 trial were partially corrupted by radar frequency 
interference (RFI) or 'spoking' due mainly to the simultaneous operation of the weather 
radar of the aircraft and the Ingara radar. Spoking usually manifests itself as a bright 
streak in range as the interfering RF pulse is received during the time the Ingara radar 
is sampling. It appears as a sinusoidal signal for the duration of the interference pulse. 
There are also spokes that are not easily seen in amplitude but become evident in any 
phase or spectral analysis of a range line. These low level (in amplitude terms) spokes 
may be due to a bi-static effect of an echo from a true target of a weather radar pulse, 
which is then received by the Ingara radar. The main problem caused by spoking is 
that spokes appear like bright target returns on weak target returns that change the 
statistics of analysing data set. Therefore spoking is an unwanted component of the 
data set and as such it has to be removed from the data. 

2.7.2   Detection of Spokes in Sampled Return 

The presence of a spoke in a range line can most robustly be determined by looking at 
the spectrum (magnitude of the FFT squared) of each range line. The presence of a 
spoke is characterized by unnaturally strong spectral lines in the spectrum whereas for 
a range line consisting predominantly of clutter, the spectrum would be a relatively 
flat, "random" spectrum. There may be more than one spectral line associated with a 
spoke. This spectrum was thresholded to produce "spoke detections". The threshold 
was lowered until the range lines being flagged as having spokes had no dominant 
spectral lines. Figure 8 shows the spectrum of a range line with no spoke. 
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Spectrum of rangeline 

-20 

Figure 8: Spectrum of a range line without RFI present (without the shift of zero-frequency 

component to center of spectrum). 

Notice that there are no dominant spectral components. 

Figures 9, 10 and 11 show how various cases of spokes in a range line affect the 
spectrum. 

Spectrum of rangeline 

10 20 30 40 50 60 70 80 90 100 

Frequency (MHz) 

Figure 9: Spectrum of a range line with strong RFI present (without the shift of zero-frequency 
component to center of spectrum). 

10 
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Spectrum of rangeline 

CO 
■o 

10 20 30 40 50 60 

Frequency (MHz) 
70 80 90 100 

Figure 10: Spectrum of a range line with weak RFI present (without the shift of zero-frequency 
component to center of spectrum). 

Spectrum of rangeline 

10 20 30 40 50 60 

Frequency (MHz) 
70 80 90 100 

Figure 11: Spectrum of a range line with RFI present (without the shift of zero-frequency 
component to center of spectrum). Note 2 dominant spectral lines. 

2.7.3 Replacement of Spokes in Sampled Return 

Once a spoke has been detected in a range line, it is desirable to replace that range line 
with some estimate so that there are no bright streaks appearing in the data. Because 
the raw sampled data is 8-bit resolution I and Q components, the strong spokes 
saturate the A/D convertor and no underlying clutter structure can be inferred from 
the range line. The replacement was done in the range-compressed data (i.e. the 
detection of spokes was done on the raw sampled data but the replacement was done 

11 
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on the data produced by the matched filtering). A simple replacement strategy is to 
replace a spoked range line with some average of the adjacent lines. This is what was 
done, with each range cell in the range-compressed, spoked range line being replaced 
by a complex number (I/Q) whose magnitude was the average of the magnitudes of 
the corresponding range cells in the adjacent lines and whose phase was the averaged 
phase of these cells. In the case of two consecutive spoked range lines, the replacement 
lines were linearly interpolated between the adjacent unspoked lines. 

3. Statistical Analysis of Sea Clutter Data 

The wide interest in radar clutter analysis is demonstrated by the large number of 
research papers published in the literature [4-19, 27-39]. This interest can be explained 
by the fact that the development of statistical models that properly characterise radar 
clutter processes are required both for optimum detection algorithm design and for 
performance prediction. 

Radars operating in a maritime environment have a serious limitation imposed on their 
performance by unwanted sea echoes [3-9, 36]. For low-resolution radars, in which the 
resolution cell dimensions are much greater than the sea swell wavelength, and for 
grazing angles greater than about 10°, it is well known that the clutter amplitude is 
Rayleigh distributed. In modern radar systems operating at low grazing angles and 
with high-resolution capabilities, the clutter amplitude distribution is observed to 
develop a longer "tail " and displays a larger standard deviation-to-mean ratio than 
would be predicted under the Rayleigh distribution [4-7, 21-26]. The sea clutter spikes 
are processed by the radar detector as targets, giving an increase in false alarm rate. 
Therefore, representative clutter models are important in evaluating modern radar 
detection performance, particularly in radars that employ constant false alarm rate 
processors to adapt the detection threshold to the local clutter and background noise 
power. For the effective application of theoretical models it is necessary to test their fit 
with real data using different radar parameters and environmental conditions. 

The main aim of this section of the report is to describe the detailed statistical analysis 
performed on experimental data, which were collected off the Northern Australian 
coastline with the Ingara radar. The data were collected in order to test the theoretical 
models that will be used for the detection performance prediction of the Israeli built 
Elta EL/M2022(V)3 maritime surveillance radar in Australian environmental 
conditions. In particular, the applicability of the K-distribution for modelling the 
statistics of low grazing angle sea clutter for a high-resolution radar with the 
parameters similar to those of the EL/M2022(V)3 radar Anti-Submarine Warfare mode 
in a sea state 2-3 has been verified. 

The detailed description of the statistical analysis of three sets of collected data that 
represent different flight geometry corresponding to three cases of major interest for 
the research is presented in the report: 

12 
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• run22886 data set presents the up swell/upwind flying geometry, 
• run22884 data set presents the cross-swell/cross-wind flying geometry, and 
• run22885 data set presents the flying geometry with the intermediate look direction 

compared to the swell direction/wind direction. 

Figures 12-14 present time histories of the clutter plus noise mixture amplitude in 
single range cells from these analysed data sets. As transmitted and received signals 
had vertical polarization, the sea clutter is not very spiky; however the presence of 
spikes is evident. The dominant spikes persist for 1-2 seconds. The spikiest response 
from the sea surface corresponds to the upswell look direction (Figure 12) regardless of 
the fact that the distance to the analysed range cell in this look direction is twice that of 
the range cell analysed in the cross-swell look direction (Figure 13). The distance to the 
range cell analysed in the intermediate look direction (Figure 14) is almost four times 
longer than to the range cell analysed in the cross-swell/cross-wind look direction. 
Therefore the clutter-to-noise ratio is much lower in this case and the influence of noise 
is more evident. Nevertheless all time histories of the clutter plus noise mixture 
amplitude display a larger standard deviation-to-mean ratio than would be predicted 
under the Rayleigh distribution. 

3.1 Analysis of In-phase and Quadrature Components 

This section of the report provides the results of statistical analysis of the amplitude 
distribution of I and Q components and the phase distribution of experimental data 
that represent different flying geometry corresponding to the upswell/upwind, cross- 
swell/cross-wind and intermediate look directions relative to the swell/wind 
direction. 

The amplitude history of received sea clutter signals from a range cell is defined as 

\Z\ = ^Re{z)2+lm{zf   , (3.1) 

where Z is the vector of complex data to be analysed, from a range cell, Re(Z) and 
Im(Z) are vectors of I and Q component values respectively. 

The phase history of received sea clutter signals from a range cell is determined using 
the corresponding I and Q component values: 

V    v  ' J 

where O is a vector of sea clutter response phases in a range cell. 

(3.2) 

13 
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Magnitude of azimuth line 48 (run22886ds.mat) 

Time (s) 

Figure 12: Time history of the clutter+noise mixture amplitude in a range cell for run22886 
data set. 

Magnitude of azimuth line 20 (run22884ds.mat) 

ä   3 -, 

Time (s) 

Figure 13: Time history of the clutter+noise mixture amplitude in a range cell for run22884 
data set. 

Magnitude of azimuth line 12 (run22885ds.mat) 

Figure 14: Time history of the clutter+noise mixture amplitude in a range cell for run22885 
data set. 
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Two important results of previous research into coherent properties of the high- 
resolution sea clutter data collected at low grazing angles [4-6, 11, 36] can be 
summarised as follows: 
• The I and Q components of high-resolution sea clutter data at low grazing angles 

have a non-Gaussian probability density function distribution (PDF) and, hence, 
the amplitude of received sea clutter signals is not Rayleigh distributed, and 

• Non-Rayleigh sea clutter phase distribution is practically uniform. 

Therefore, we should show that the I and Q components of experimentally collected 
data have a non-Gaussian PDF and the phase distribution of sea clutter returns is 
uniform. It would indicate that the Rayleigh model for the sea clutter amplitude PDF 
does not fit the collected data. Thus, we would confirm the above statements for the sea 
clutter data collected in Australian environmental conditions by a radar with the 
parameters similar to those of the EL/M 2022A(V)3 radar Anti-Submarine Warfare 
mode. The Rayleigh model should then be replaced with other statistical models that 
are usually used for the analysis of spiky sea clutter [19-26]. 

3.1.1 Analysis of In-phase and Quadrature Components Amplitude 
Distribution 

Figures 15-17 present several examples of histograms of raw I and Q components of sea 
clutter collected from different range cells of the analysed data sets. 

To check whether the I and Q components of experimentally collected data have a 
Gaussian PDF, histograms of both components were analysed using the approach 
proposed in [17]. Figures 18-20 show the empirical PDFs of raw I and Q components of 
the data collected from a single range cell of each analysed data set that are compared 
with the corresponding Gaussian PDFs having the same mean values and variances. 
(The mean values are zero as the DC offset of each channel has been estimated from the 
corresponding entire data set and then removed from the data). It can be seen that the I 
and Q PDFs deviate from Gaussian in every case, and therefore the clutter amplitude is 
not Rayleigh distributed in all the analysed experimental data sets. 

These results have been confirmed by analysis of skewness y 3 and kurtosis y 4 of 

empirical PDFs of I and Q components that are defined as follows [17] 

(  z) EJZLQ-E{z,,a}f\ 
V   3 )l,Q ~       r, , ..    -,3/    ' V       ' 

E{Z,,Q-E{zj}f 

(yj)     _  E{ZLQ-E{ZLQ})^    ^ (34) 
4/,e   E{ZLQ-E{Z,J

2
] 
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Histogram of Raw I and Q data across azimuth line 15 (run22886ds.mat) 

o 2 
Amplitude (raw) 

Figure 15: Histograms of I and Q components of the clutter+noise mixture in a range cell of 
run22886 data set. 

Histogram of Raw I and Q data across azimuth line 20 (run22884ds.mat) 
500 

400 

300 - 

200 - 

100 - 

0 

0 2 
Amplitude (raw) 

Figure 16: Histograms of I and Q components of the clutter+noise mixture in a range cell of 
run22884 data set. 

Histogram of Raw I and Q data across azimuth line 12 (run22885ds.mat) 
2000 

ra     1500 
to 

-0.5 0 0.5 
Amplitude (raw) 

Figure 17: Histograms of I and Q components of the clutter+noise mixture in a range cell of 
run22885 data set. 
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Empirical PDF of Raw I and Q data across azimuth line 48 (run22886ds.mat) 

2    0.6 a -a 
—     0.4 
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•D 

0.2 A 
Figure 18: 
mixture in 

Amplitude (raw) 

Comparison of the empirical PDFs of I and Q components of the clutter+noise 
a range cell ofrun22886 data set with the corresponding Gaussian PDFs. 

Empirical PDF of Raw I and Q data across azimuth line 17 (run2288ds4.mat) 

T3 

Amplitude (raw) 

Figure 19: Comparison of the empirical PDFs of I and Q components of the clutter+noise 
mixture in a range cell ofrun22884 data set with the corresponding Gaussian PDFs. 

Empirical PDF of Raw I and Q data across azimuth line 6 (run22885ds.mat) 

8    1.5      - 
(0 

^■■L. 
o 

■ilHlL. 
Amplitude (raw) 

Figure 20: Comparison of the empirical PDFs of I and Q components of the clutter+noise 
mixture in a range cell ofrun22885 data set with the corresponding Gaussian PDFs. 
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where #{ar} is defined the r -th sample moment, ZlQ is the vector of analysing I or Q 

data from a range cell respectively. 

Skewness characterises the degree of asymmetry of a distribution around its mean 
value. Kurtosis measures the relative peakedness or flatness of a distribution. For a 
Gaussian PDF, these two parameters are both equal to zero, so they measure deviation 
of the data from Gaussian. The values of skewness and kurtosis reported in Table 5 for 
two range cells in every analysed data set show that the asymmetry is not significant; 
in contrast, peakedness is considerable in all cases. 

Table 5: Skewness and kurtosis ofin-phase (I) and quadrature (Q) component PDFs. 

Run ID Distribution 
parameter 

First range cell Second range cell 

I Q I Q 
22886 Skewness -0.0416 0.0543 -0.0986 -0.0231 

Kurtosis 0.5920 0.5316 1.0994 1.0541 

22884 Skewness -0.0189 0.0201 0.0667 -0.0739 

Kurtosis 0.4336 0.5205 1.0068 0.7667 

22885 Skewness 0.0011 -0.0516 -0.0149 -0.0415 
Kurtosis 1.3344 1.0418 1.3396 1.3236 

3.1.2 Analysis of Received Sea Clutter Signals Phase Distribution 

The uniform PDF for phase is defined as 

P9(9>) 

0     if 

2K 
0     if 

<P<-7t 

K <<p<7t 

(D>JZ 

(3.5) 

To check the uniformity of sea clutter phase distributions for the collected data sets, 
empirical sea clutter phase distributions were calculated for several range cells from 
each analysed data set. 

Figures 21-23 present the resulting typical phase distributions obtained from the 
considered data sets. The four different colours of each figure correspond to the 
empirical sea clutter phase distributions for four range cells. 

The phase distribution is indeed essentially uniform for each data set. 

Thus, the analysed data are characterized by a non-Gaussian nature of the I and Q 
components and a uniform phase distribution of the sea clutter return and, therefore, 
they have to be modelled by non-Rayleigh models applied to the spiky sea clutter. 

18 
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Empirical Phase Distribution (run22886ds.mat) 

o 1 

Phase in radians 

Figure 21: Typical phase distributions of sea clutter for run22886 data set. 

Empirical Phase Distribution (run22884ds.mat) 

o 1 

Phase in radians 

Figure 22: Typical phase distributions of sea clutter for run22884 data set. 
Empirical Phase Distribution (run22885ds.mat) 

Phase in radians 

Figure 23: Typical phase distributions of sea clutter for run22885 data set. 
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3.2 Sea Clutter Amplitude Probability Density Function Analysis 

Unlike thermal noise or sea clutter returns for a low-resolution radar, most sea clutter 

returns for a high-resolution radar at low grazing angles are correlated non-Gaussian 

processes. It was shown in the previous section that the data collected during the ESRL 

38/97 trial are characterized by non-Gaussian nature of the I and Q components. Hence 

these data do not belong to those whose PDF of the amplitude of signals reflected from 

the sea surface is well modelled by Rayleigh PDF (see Table 6). Therefore, this model 

should be replaced with other more realistic and self-consistent statistical models that 

agree with experimental data. Many different distributions have been proposed in the 

literature to model the amplitude PDF of spiky sea clutter [19-26]. This section of the 

report briefly presents the most popular spiky sea clutter models, which have been 

applied to the experimental data collected during the ESRL 38/97 trial, and 

demonstrates that the K-distribution provides the best results in modelling of the data. 

3.2.1 Amplitude Probability Density Function Modelling 

The most popular models for modelling of spiky sea clutter amplitude PDFs are: Log- 

Normal [6, 19, 24], Weibull [6, 19, 25] and K-distribution [4-6,19-23, 36]. The 

expressions for each model cumulative distribution function (CDF), PDF and moments 

are presented in Table 6*. In this table, a = \z\ is the amplitude of the return signals that 

is defined for the range 0 < a < °° . 

Table 6: Considered models for sea clutter amplitude distribution. 

Model 

Rayleigh 

Log-Normal 

Weibull 

K- 
distribution 

CDF 

FÄ(a) = l-exf 

F,(a) = 4> 
Ina -ß 

F„,(a) = l-exj - 
KBJ 

/=» = ! = ._Lfe" 
Uy)\ 2 

KAca 

PDF 

2a 
/«(a) = —rexp 

/<.(«) = ■Jliii JlOa 
-exp 

(lna-//)" 
lal 

fw(a)=Z- w      cs\m 

Y 
exp 

' a * 

/*(«) = 
2c 

r(v) v2/ 
Kv-M 

Moments 

ER(ar)=G7rr\l + - 

EL(a) = sJrfl+^r2a2 

Ew(ar)=aJYT '.+^ 

pf M    2T(0.5r+l)r(0.5r+y) 
E«(a)=—fw?— 

i Definitions: 07 is a scale parameter for the Rayleigh and Weibull distributions; r is the order of 
moment; T(z) is the Gamma function; ln(a) is Normally distributed with mean u and variance 

a1 for Log-Normal distribution; yis a shape parameter for the Weibull distribution; c is a scale 

parameter and v is a shape parameter for the K-distribution; Kv_x (z) is the modified Bessel 

function of the second kind of order v-1 and O(z) is the error function . 
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The results of comparing the empirical sea clutter normalised amplitude distribution 
(each distribution is normalised to its mean [4, 19]) with the considered spiky sea 
clutter models (Table 6), are summarised in Table 7 and shown in Figures 24 -29 for a 
range cell with the maximum echo signal amplitude from each analysed data set. 

Table 7: Estimates of distribution parameters by different methods for an azimuth line with the 
maximum echo signal amplitude in experimentally collected data sets. 

RUN 
ID 

Distribution 
Parameter 

Log- 
Normal 

Distribution 
Parameter 

Weibull K- 
distrib. 
(Ragh.) 

K- 
distrib. 
(Watts) 

K- 
distrib. 
(FSM) 

22886 mean -0.3450 shape 1.7640 5.4407 2.6785 3.9881 
variance 0.4513 scale 0.9670 4.7049 3.2732 3.9948 

22884 mean -0.3414 shape 1.7771 5.6414 3.4599 4.2957 
variance 0.4489 scale 0.9873 7.6254 3.7202 4.1463 

22885 mean -0.3430 shape 1.7631 5.9253 2.3346 3.9196 
variance 0.4484 scale 0.9664 4.9217 3.0559 3.9602 

For the Log-Normal and Weibull distributions the estimates were provided by the 
maximum likelihood (ML) estimator [19, 24, 25], but because of the difficulty of 
applying the same estimator to the K-distribution, three well known sub-optimal 
methods of the K-distribution parameter estimation were used (detailed comparison of 
these methods is given in [19, 26]): 
• Method based on the arithmetic and geometric means estimation, proposed by 

Raghavan [21], that uses the similarity between the K- and Gamma-distributions, 
• Method based on the first and second sample moments estimation (FSM), proposed 

in [21], and 
• Method based on the second and fourth sample moments estimation, proposed by 

Watts [23]. 

Analysis of the K-distribution parameter estimation results for the analysed data sets 
(Figures 24 - 26) shows that: 
• The sea clutter of the observed W-polarized data is not very spiky (that 

corresponds to the K-distribution shape parameter value v > 2), and 
• All methods provide relatively close values of the shape parameter estimate (the 

shape of the K-distribution PDF becomes less sensitive to the shape parameter 
value when v > 2 compare to the case of v < 2). 

It is well known that the moments based methods are better suited to the estimation of 
large values of the shape parameter of the K-distribution (v > 2) as the correspondence 
between the K- and Gamma distributions is weak for such shape parameter values. 
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K-Distributions for different estimation methods (run22886ds.mat) across azimuth line 48 
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-S      0.6 

Normalized amplitude value 

Figure 24: Comparison of K-distribution PDFs estimated by different methods for an azimuth 
line with the maximum echo signal amplitude in run22886 data set. 

K-Distributions for different estimation methods (run22884ds.mat) across azimuth line 17 
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<D     0.6 
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Figure 25: Comparison of K-distribution PDFs estimated by different methods for an azimuth 
line with the maximum echo signal amplitude in run22884 data set. 

K-Distributions for different estimation methods (run22885ds.mat) across azimuth line 6 
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Figure 26: Comparison of K-distribution PDFs estimated by different methods for an azimuth 
line with the maximum echo signal amplitude in run22885 data set. 
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Therefore, for the analysed sea clutter data FSM and Watts' methods provide more 
accurate K-distribution parameter estimates compared to Raghavan's method. 

It should be noted that in general thermal noise should not be neglected when analysis 
of the collected data is performed, as the clutter-to-noise ratio (CNR) may be not very 
high for some azimuth lines in the analysed data sets (i.e. CNR < 10 dB). In this case the 
effective value of the K-distribution shape parameter estimated for an analysed 
azimuth line corresponds to K+thermal noise distribution [23]. 

Figures 27 - 29 demonstrate fitting of the real data by three most popular models for 
the spiky sea clutter (Log-Normal, Weibull and K-distribution). It can be seen that for 
the same data set the K-distribution model (Watts' method) lays between the Log- 
Normal and the Weibull distribution models in the tail region, as it has been reported 
by other authors [6, 17]. In order to find, which model provides the best fit to the real 
data, the moments analysis, modified chi-square test and cumulants analysis were 
performed on the collected data sets. 

3.2.2 Moments Analysis 

To investigate the sea clutter behaviour in depth, the comparison of the second, third, 
fourth, fifth and sixth normalised amplitude moments of the collected data with those 
for the Rayleigh distribution has been performed. The n-th normalised moment (n =1, 
2, 3, 4, 5, 6) is determined as follows [4,17]: 

E"{A}' 

where A - \Z\ is the vector of amplitudes of sea clutter return from a range cell. 

M. (3.6) 

Table 8 consists of the resulting values of these normalised amplitude moments for the 
Rayleigh PDF and the collected data from an azimuth line with the maximum echo 
signal amplitude in each analysed data set. It can be seen that the normalised 
amplitude moments characterizing the observed data are higher than the 
corresponding values characterizing the Rayleigh PDF. Therefore, the empirical 
amplitude distributions for the analysed ESRL 38/97 trial data sets have tails longer 
than that of the Rayleigh distribution. This is more proof that these data have to be 
modelled by statistical models, which are usually applied to the spiky sea clutter. 

Table 8: Normalised observed moments for the sea clutter return from azimuth lines with the 
maximum echo signal amplitude in analysed data sets. 

Run ID M2 M3 M4 M5 M6 

Rayleigh 1.2732 1.9099 3.2423 6.0793 12.3846 
22886 1.3559 2.3438 5.0496 13.4230 43.3790 
22884 1.3501 2.2939 4.6992 11.2201 30.3567 
22885 1.3573 2.3783 5.2627 14.3838 47.0967 
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Comparison of different estimated PDFs (run22886ds.mat) across azimuth line 48 

2:   O.E 

^JlL>-_ 

 Lognormal 
WeibuUML 

 Watts 

Normalized amplitude value 

Figure 27: Comparison of different estimated PDFs for an azimuth line with the maximum echo 
signal amplitude in run22886 data set. 

Comparison of different estimated PDFs (run22884ds.mat)across azimuth line 17 
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Figure 28: Comparison of different estimated PDFs for an azimuth line with the maximum echo 
signal amplitude in run22884 data set. 

Comparison of different estimated PDFs (run22885ds.mat) across azimuth line 6 
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Figure 29: Comparison of different estimated PDFs for an azimuth line with the maximum echo 
signal amplitude in run22885 data set. 
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To provide a comparison of the different non-Rayleigh sea clutter models that have 
been applied to the collected data, the ratio of the theoretical to the observed sample 
moments for each combination of the parameter estimation and model considered 
were calculated and compared. Tables 9-11 present the results of this analysis for the 
first to sixth moments ratio for an azimuth line with the maximum echo signal 
amplitude in each analysed data set. 

Table 9: Ratio of theoretical and observed moments for different estimation methods for an 
azimuth line with the maximum echo signal amplitude in run22886 data set. 

Ratio of 
Moments 

Log- 
Normal 

Weibull K-distribution 
(Raghavan) 

K-distribution 
(Watts) 

K-distribution 
(FSM) 

mtl/mol 1.0324 1.0024 1.0000 0.9851 1.0000 

mt2/mo2 1.2369 0.9951 0.9831 1.0000 0.9996 

mt3/mo3 1.8235 0.9413 0.8295 1.0144 0.9762 

mt4/mo4 3.4000 0.8262 0.8332 1.0000 0.9101 

mt5/mo5 8.0100 0.6597 0.6915 0.9367 0.7948 

mt6/mo6 24.5000 0.4771 0.5304 0.8271 0.6468 

Table 10: Ratio of theoretical and observed moments for different estimation methods for an 
azimuth line with the maximum echo signal amplitude in run22884 data set. 

Ratio of 
Moments 

Log- 
Normal 

Weibull K-distribution 
(Raghavan) 

K-distribution 
(Watts) 

K-distribution 
(FSM) 

mtl/mol 1.0337 1.0023 1.0000 0.9933 1.0000 

mt2/mo2 1.2399 0.9959 0.9858 1.0000 0.9995 

mt3/mo3 1.8514 0.9534 0.9474 1.0037 0.9851 
mt4/mo4 3.6000 0.8741 0.8875 1.0000 0.9553 

mt5/mo5 9.4000 0.7711 0.8158 0.9929 0.9166 
mt6/mo6 33.8000 0.6604 0.7429 0.9894 0.8774 

Table 11: Ratio of theoretical and observed moments for different estimation methods for an 
azimuth line with the maximum echo signal amplitude in run22885 data set. 

Ratio of 
Moments 

Log- 
Normal 

Weibull K-distribution 
(Raghavan) 

K-distribution 
(Watts) 

K-distribution 
(FSM) 

mtl/mol 1.0346 1.0023 1.0000 0.9790 1.0000 

mt2/mo2 1.2347 0.9940 0.9784 1.0000 0.9997 

mt3/mo3 1.7873 0.9280 0.9083 1.0176 0.9650 

mt4/mo4 3.2000 0.7932 0.7834 1.0000 0.8782 

mt5/mo5 7.3000 0.6163 0.6248 0.9378 0.7483 

mt6/mo6 21.7000 0.4401 0.4665 0.8448 0.6033 
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It can be seen that for all the analysed data sets: 
• The results for the Log-Normal distribution model suggest overestimation of the 

tail length of the experimental data amplitude histogram; 
• The lower moments for the Weibull distribution model are in a good agreement 

with the real data but the higher moments are underestimated indicating a shorter 
distribution tail length compared to the experimental data amplitude histogram; 

• The K-distribution model provides the best fit to the experimental data amplitude 
histogram compared to Log-Normal and Weibull distribution models; 

• The K-distribution model under Raghavan's method provides the most similar 
results to those for the Weibull distribution model among all considered methods 
of the K-distribution parameter estimation; 

• The K-distribution model under Watts' method has the best higher moments ratio 
among all the combinations considered; 

• The results for the K-distribution model under the FMS method lays roughly 
between those for the K-distribution model under Raghavan's and Watts' methods 

for all analysed data sets. 

3.2.3 Modified Chi-square Test 

To verify the results of the experimental amplitude histograms fitting by various 
models in the tail regions of the PDFs that correspond to the low probability of false 
alarm (PFA) region, the modified chi-square test was proposed [5, 6]. Boundaries of 
intervals in this test are determined for each of the statistical models in the amplitude 
region for which PFA is less than or equal to 0.1, assuming a zero weighting in the 
amplitude region where PFA is greater than 0.1. Thus, the modified chi-square index is 

defined as 

2_f\fk-N(OAPk))2 (37) 
Xm     \H       N(0.\pk)      ' 

where K is the number of intervals into which the low PFA region of the statistical 

model is divided, fk is the observed number of occurrences of a clutter sample having 

an amplitude within the Jt-th interval, N is the total number of amplitude samples 

forming the histogram, and N(0.\pk) is the weighted expected number of occurrences 

in the k-th interval for the statistical model in the low PFA region. 

A lower modified chi-squared index %l value indicates a better fit of the model to the 

data being considered. Tables 12 and 13 summarise the modified chi-square tests on 
sea clutter for azimuth lines with the maximum and the minimum echo signal 
amplitudes in the analysed experimentally collected data sets. 

26 



DSTO-TR-1236 

Table 12: Summary of modified chi-square test on sea clutter for an azimuth line with the 
maximum echo signal amplitude in experimentally collected data sets. 

RUN ID Log- 
Normal 

Weibull K-distribution 
(Raghavan) 

K-distribution 
(Watts) 

K-distribution 
(FSM) 

22886 9533.7 8217.9 6810.1 5346.7 5768.8 

22884 7742.9 4962.2 4842.3 4095.2 4307.7 

22885 17019 30207 13915 7975 9763 

Table 13: Summary of the modified chi-square test on the sea clutter for an azimuth line with 
the minimum echo signal amplitude in experimentally collected data sets. 

RUN ID Log- 
Normal 

Weibull K-distribution 
(Raghavan) 

K-distribution 
(Watts) 

K-distribution 
(FSM) 

22886 7491.7 6004.1 6190.2 5732.6 5857.1 

22884 5410.4 4607.0 4790.83 4491.4 4557.8 

22885 13010 11524 11710 11630 11644 

The good fit to the K-distribution is confirmed for all analysed data. The comparison of 
the modified chi-squared index xl values for all considered models shows that the 
best results in the important low PFA region can be achieved by applying the K- 
distribution model to the sea clutter data. 

Among the K-distribution parameter estimation methods, the PDF with the parameters 
using Watts' method gives the best fit to the experimental amplitude histogram in this 
region. 

3.2.4 Cumulants Domain Analysis 

To perform a deeper analysis of the K+thermal noise model, the theory of cumulants 
has been applied to the clutter coherent samples, as was suggested in [17]. 

As it is well known, cumulants of order higher than 2 for a Gaussian process are 
identically zero. Thus, considering the process 

W= y[n]+w[n], (3.8) 

where w[n] is a Gaussian process and y[n] is a non-Gaussian process, independent of 
w[n], it can be noted that 
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ct=[/i /*-i] = ^iV['i '*-il + ^K"['i /*-il 
(3-9) 

= c{ [/, ,...,/*_,]      far   k>3 

Therefore the cumulants of y[n] can be derived from the cumulants of z[n]. 

As the I and Q components of the thermal noise are zero-mean Gaussian processes, 
then only non-Gaussian clutter contributes to the third, fourth and fifth order 
cumulants of the observed data. Since the fc-th-order cumulants can be expressed in 
terms of moments of order p <k, sample moments of cz

k [/,,...,/,_, ] can be obtained from 

data estimates of m\[lx\ /* = [/,,/,],..., mA;[/,,...,/,_,]• For k = 3, 4, 5 the values of 

cj;[/, ,.••,/*_! ] are determined as [17]: 

2N   ,1=0 
(3.10) 

where 0<h<h<N-l. 

2i[/1,/,,/J = cf[/1,/,jJ = Äi[/1,/2,/3]-Än/1>ii2
/[/2-/,]-/Ji2

/[/2W[/3-/1] 

Ca/1,/2,/v^] = ^[/1./2./,,/4]=W5['..'2.'3.'4]-W3l'..'2^n/4-^]-*3lA./3]*2t4-'2] 

-Ä3'[/2-/1,/3-/1Wt4]-«3/['2.^['4-'|]-^['2-'..'4-'.]*2['3] 
_/^[/i_/i,/4-/i]/^[/J-m^/3-/2J4-/2^U/,]-'"3,['2^4^2^-'1] 

-«ik./^k-'j (3-12) 

Given N samples of z[n]= z, [n]+ zQ[n] (in complex envelope notation), the p-th-order 

moments (for p < 5) are estimated using 

+ zQ[nZ[n + llUQ[n + p-l$ (3-13) 

where 0</,,-; < ... </2</i<N-2. 

For the K-distribution coherent model, all the cumulants of odd order calculated at the 
origin are equal to zero, while for the second and forth cumulants the following 
relations hold true: 

c,'[0] = c?[0] = -^, (3.14) 
c~ 
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c{ [0,0,0] = c? [0,0,0] = 16v (3.15) 

where c is the scale parameter and v is the shape parameter of the K-distribution PDF 

and c'2 [0] = cf [0] = m[ [o] = m° [o]. 

To compare the values of c{ [0,0], c\ [0,0,0] and c[ [0,0,0,0] with theoretical cumulants 

of the coherent K-distribution model, all cumulants have been normalised with respect 
to the corresponding second order cumulant as follows [17]: 

Mt = 
c/[0,0,-,0] = cf[0A-,0] (3.16) 

Tables 14 and 15 present a summary of the cumulants domain analysis for azimuth 
lines with the maximum and the minimum echo signal amplitudes in the analysed 
experimentally collected data sets. 

Table 14: Summary of the cumulants domain analysis of the sea clutter amplitude distribution 
for an azimuth line with the maximum echo signal amplitude in experimentally collected data 
sets. 

RUN ID Theoretical 

fii 

Real fis Theoretical 

MA 

Real fi4 
Theoretical Real fi5 

22886 0 0.0360 1.4934 1.1651 0 1.6255 

22884 0 -0.0077 1.1561 0.8996 0 0.3396 

22885 0 0.0269 1.7733 1.3344 0 -0.9380 

Table 15: Summary of the cumulants domain analysis of the sea clutter amplitude distribution 
for an azimuth line with the minimum echo signal amplitude in experimentally collected data 
sets. 

RUN ID Theoretical 

fi3 

Real //5 
Theoretical 

MA 

Real fiA 
Theoretical 

fis 

Real //5 

22886 0 -0.0253 0.2376 0.2266 0 0.0336 

22884 0 0.0571 0.2571 0.1997 0 -0.0190 

22885 0 -0.0537 0.2581 0.1907 0 0.1236 

Analysis of the results of comparing the values of c[ [0,0], c[ [0,0,0] and c[ [0,0,0,0] 

with theoretical cumulants of the coherent K-distribution model shows that: 
•    The values of the real cumulants that have been estimated as in equations (3.10)- 

(3.12) are close to the theoretical values that have been obtained from the estimates 
of c and v by Watts' method (this method was chosen as it gives a better fit to the 
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experimental amplitude histogram in the low PFA region than the others methods 
of estimation of the K-distribution parameters); 

• As expected for the K-distribution model, //3 ~ 0 and JU5 ~ 0; 

• The deviation of /)4 from the K-distribution model is small for all analysed data. 

Therefore, a good fit of the collected data with the K-distribution model is confirmed. 

3.3 Compound K-distribution Model 

In its compound form, the K-distribution model is decomposed into two components 
[4-6, 17, 19-23, 36]. According to this model the overall disturbance | z | can be 
presented as the product of a local Rayleigh component x (referred to as speckle) by a 
root-Gamma component y (referred to as texture) that modulates the power level 
relative to the underlying sea swell: 

(3.17) lyx 

The PDF of these two components are defined respectively: 

•     For the texture y: 

p+y) nv) 
r£l) y-exp(-yy), (3.18) 

where c is the scale parameter (such that c2 = K , where E{y) is the average 
E{y) 

power of the clutter) and v is the shape parameter. 

For the speckle x that has a mean level determined by the first component y: 

71 X 
px(x/y) = —-txp 

2v 

K X 

Ay 
(3.19) 

The considered components x and y show two different decorrelation times. The 
speckle has a short temporal decorrelation period on the order of tens of milliseconds, 
and can be decorrelated from pulse to pulse by frequency agility. The texture has a 
long temporal decorrelation period on the order of a few seconds and it is not affected 
by frequency agility. 

Therefore, in a short time period the mean level can be assumed constant and the 
speckle component can be isolated by considering short time sequences. On the other 
hand, the texture component can be isolated by averaging the modulus-squared data 
over a window of short time duration, to remove the speckle effect [4, 17]. 
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To estimate the duration of these short time sequences, the time history of the texture 
was estimated from a moving window of the collected data, assuming that the thermal 
noise is negligible [17]: 

ßh^ik-MI2 (3-20) 
2N n=\ 

with different values of the window length N from 64 to 2048 samples. Here {z; [n]\n 

are the coherent clutter samples from the i - th block). 
=i 

Figures 30-32 present the results of the texture time history estimation for a range cell 
with the maximum echo signal amplitude in each analysed data set. 

It can be seen that 64- and 128-point estimates of z exhibit high variance around the 
mean value, due to the speckle variation. In contrast, the 1024- and 2048-point curves 
are more regular, but they do not follow the mean trend. It means that the durations of 
1024 and 2048 samples exceed the invariability time. 

Analysis has indicated the underlying texture component to be strongly correlated 
over a period of about 0.5 sec. Therefore, to isolate the speckle component, sequences 
of 256 sweeps (0.5 sec. at 500 Hz PRF) of clutter data were analysed and amplitude 
histograms were calculated. The results of comparing the speckle component empirical 
PDF with the corresponding Rayleigh PDF in a single range cell of each analysed data 
set are presented in Table 16 and shown in Figures 33-35. 

Table 16: Normalised observed moments for the speckle component of sea clutter return from 
azimuth lines with the maximum echo signal amplitude in analysed data sets. 

Run ID M2 M3 M4 M5 M6 

Rayleigh 1.2732 1.9099 3.2423 6.0793 12.3846 
22886 1.2773 1.9378 3.3489 6.3952 13.1819 
22884 1.2694 1.9046 3.2543 6.1624 12.6504 
22885 1.2800 1.9595 3.4331 6.6669 13.7575 

The results indicate that the speckle component is indeed Rayleigh distributed. 

In order to isolate the texture component, averaging of modulus-squared data over a 
window of 128 ms (64 sweeps) was implemented to remove the speckle effect. This 
procedure, described by equation (3.25), was applied to several range cells in each 
analysed data set. The amplitude histograms of the resulting disturbance for a single 
range cell from each data set are plotted in Figures 36-38. As a comparison, every 
Figure also shows the Gamma theoretical PDF having the same first- and second-order 
moments. The fit with the data is good, as expected for the K-distribution model. 
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Texture estimate time history across azumith line 48 (run22886ds.mat) 

CD 
ra   2.5 
E 
w 
t» 2 
t» 

*      1 5 

A A A 
~—-—— $m ̂ ä / --^ V^~ 

8 10 

Time (s) 

Fz'gwre 30: Normalised data texture estimate time history for run22886 data set [N=64 - yellow, 
N=128-green, N=256 - blue, N=512 - red, N=1028 - black, 2048 - cyan]. 

Texture estimate time history across azumith line 17 (run22884ds.mat) 
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Figure 31: Normalised data texture estimate time history for run22884 data set [N=64 - yellow, 
N=128-green, N=256 - blue, N=522 - red, N=1028 - black, N=2048 - cyan]. 
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Figure 32: Normalised data texture estimate time history for run22885 data set [N=64 - yellow, 
N=128-green, N=256 - blue, N=512 - red, N=1028 - black, N=2048 - cyan]. 
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Empirical PDF of speckle for azimuth line 62 (run22886ds.mat) 
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Figure 33: Comparison of the empirical PDF of normalised data speckle component in a range 
cell ofrun22886 data set with the corresponding Rayleigh PDF (normalised mean level). 
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Figure 34: Comparison of the empirical PDF of normalised data speckle component in a range 
cell ofrun22884 data set with the corresponding Rayleigh PDF (normalised mean level). 
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Figure 35: Comparison of the empirical PDF of normalised data speckle component in a range 
cell ofrun22885 data set with the corresponding Rayleigh PDF (normalised mean level). 
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Empirical PDF of texture for azimuth line 29 (run22886ds.mat) 
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Figure 36: Comparison of the empirical PDF of normalised data texture component in a range 
cell ofrun22886 data set with the corresponding Gamma PDF. 
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Figure 37: Comparison of the empirical PDF of normalised data texture component in a range 
cell ofrun22884 data set with the corresponding Gamma PDF. 
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Figure 38: Comparison of the empirical PDF of normalised data texture component in a range 
cell ofrun22885 data set with the corresponding Gamma PDF. 
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3.4 Correlation Analysis 

As an accurate prediction of the radar detection performance is usually more 
dependent on the accurate modelling of temporal and spatial correlation features than 
on the choice of amplitude distribution [22, 23, 36], it is important to analyse clutter 
correlation properties. 

3.4.1 Temporal Correlation Properties 

In this section of the report the results of analysis of the temporal correlation properties 
of sea clutter are presented for a single range cell in each analysed data set. For other 
cells the results are very similar. 

3.4.1.1  Coherent Temporal Analysis 

The temporal autocorrelation function (ACF) of the overall disturbance z (3.17) that 
consists of two components ((3.18) and (3.19)) with different decorrelation times is the 
product of the ACFs of these two components [17]: 

R\m] = E{z[n]z[n + m]}= R^[m]Rx[m] = 2R^[m](RX/ [m]+ jRXiXg/ [m]) (3.21) 

where x, [n] and xQ [n] are Gaussian-distributed I and Q components of the speckle. 

Therefore, the decorrelation time of the coherent signal is equal to that of the faster 
component. In order to demonstrate this fact, the temporal ACF of the overall 
disturbance z was estimated for a single range cell in each analysed data set by using M 
consecutive bursts of N = 256 complex samples: 

ÄzM = -i-X  I z* Wt [n + m] = 2&, [m] + jRz,ZQ [m]) (3.22) 
(=1   «=o 

where z,[n] and zQ[n] are the I and Q components and z[n] is the complex envelope 

of the observed signal. 

Figures 39-42 present these estimated normalised temporal ACFs of sea clutter returns 
for single azimuth lines (range cells) from several analysed experimentally collected 
data sets. It can be seen that the correlation time of the coherent disturbance is about 6- 
10 ms in every range cell, which corresponds to the usual value of correlation time of 
the speckle component of the sea clutter disturbance [29, 17]. It is also evident that 
there is a non-negligible cross-correlation between I and Q components of the sea 
clutter return due to a small Doppler shift [5, 6,17]. 
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Figure 39: Sea clutter returns temporal correlation function for an azimuth line from run22886 
data set [ I TACFI - yellow, Im (TACF) - green, Re (TACF) - red]. Grazing angle 1.14°, upwind 
look direction. 
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Figure 40: Sea clutter returns temporal correlation function for an azimuth line from run22884 
data set [ I TACF I - yellow, Im (TACF) - green, Re (TACF) - red]. Grazing angle 2.37°, cross- 
wind look direction. 
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Figure 41: Sea clutter returns temporal correlation function for an azimuth line from run22885 
data set [I TACF I- yellow, Im (TACF) - green, Re (TACF) - red]. Grazing angle 0.59°, 
intermediate look direction 135 °. 
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Figure 42: Sea clutter returns temporal correlation function for an azimuth line from run22879 
data set [\TACF\- yellow, Im (TACF)- green, Re (TACF)- red]. Grazing angle 1.14°, 
intermediate look direction 225 °. 

Detailed analysis of Figures 39-42 shows that coherence properties of low grazing angle 
sea clutter, which are characterized by the temporal ACF of coherent sea clutter return, 
are strongly grazing angle and wind direction dependent. 

The general results of this analysis are in quantative agreement with the results 
reported in [29]: 
• The short decorrelation time at the initial decay of Rz[m]  of the order of 10 ms or 

less is observed; 
• The increase of decorrelation time with increasing grazing angle is evident; 
• The intermediate look direction temporal ACF of coherent sea clutter return is 

wider than the upwind look direction ACF for the same grazing angle. 

Different scattering mechanisms can be a major cause for the complex nature of the 
temporal ACF of coherent sea clutter return. For W polarized coherent sea clutter 
signals, the mechanisms, which contribute to microwave scattering from ocean waves 
may include the following [29-31]: 
• Scattering from free Bragg waves, characterized by a Gaussian distribution in 

scatterer speeds, at all angles relative to the wind and at all grazing angles; 
• Scattering from fast to intermediate-speed, short-lifetime bound-waves (i.e. short 

relative to the lifetime of free Bragg waves) at upwind look directions at all grazing 
angles and/or scattering from facets of shorter gravity waves of different 
wavelength (and thus with a spread in values of phase speed) at upwind look 
directions at all grazing angles and 

• Multipath scattering at all angles relative to the wind and at all grazing angles. 
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3.4.1.2 Incoherent Temporal Analysis 

To estimate the temporal correlation of the two clutter components separately, it is 
necessary to analyse the incoherent signal, i.e. the squared amplitude of the coherent 
signal [17]: 

I[n] =\z[n]\2 = y[n]  (x2[n) + x2
Q[n]) (3.23) 

The temporal ACF of this incoherent signal is determined by 

R, [m] = Ry [m]  (2E{X
2
 [n]x2 [n + m]}+ E{X

2
 [n]x2

Q [n + m]}+ E{X
2
 [n + m]x2

Q [n]})     (3.24) 

If x,[n] and xQ[n] are jointly Gaussian processes with unit variance and zero mean 

then the incoherent signal ACF is given by 

R, [m] = 4Ry [m]+ 2Ry [m]R2
Xi [ra] + 2Ry [m]R2

XiXQ [m] (3.25) 

It is evident that the first temporal part of the overall correlation is dominated by the 
fast component (short-term). At this time interval the long-term correlation can be 

considered constant (i.e.   /^[rajs /^[Oj).  After a few seconds, the correlation is 

dominated by the long-term component, because R2
X [m\ = Rx x [m] = 0, that is 

R, [m] = 4Ry [m] (3.26) 

If the amplitude of the disturbance can be modelled by a K-distribution then the 
temporal ACF of the intensity is given by equation (3.25). Therefore, further proof of 
the validity of the K-distribution model can be obtained by comparing the 
nonparametrically estimated temporal ACF of the intensity with the temporal ACF 
parametrically estimated according to equation (3.25) [17]. 

3.4.1.2.1  Speckle Temporal Correlation Properties 

According to Figures 36-39, texture can be considered constant over short time 
intervals, and the speckle temporal ACF can be estimated by using coherent signal 
samples from such short intervals. Data bursts of N = 256 samples (0.5 sec) have been 
considered and the following estimators with M data block have been used to estimate 
the I and Q speckle components autocorrelation and cross-correlation functions [17]: 

i     M 

Rx [ra] = —t 
i \N-\-m 

yt2N 
Rej Xz<Mz,* ["+»*] 

n=0 

(3.27) 
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1    M 

Ry y   \m\- / XIXQ L    J       A/I *-t 
1=1 

i \N-\-m 

yt2N H Ez'Wz'*[n+m] 
n=0 

(3.28) 

For each sample set the texture value y has been estimated from the same data using 
equation (3.20) with N = 256. The resulting speckle components normalised auto- and 
cross-correlation functions for a single range cell from analysed data sets are presented 
in Figures 43-45. It can be seen that these functions are in complete agreement with 
those plotted in Figures 39-41. 

3.4.1.2.2 Texture Temporal Correlation Properties 

To estimate the texture temporal ACF, estimates of the texture values in I data blocks, 
which have been obtained from equation (3.20), have been used [17]: 

/-/ 1 

i=i 

*,[M] = y5>yW (3.29). 

Note that averaging of N samples to obtain the estimates yt gives the estimation of 

R [m] for every N steps (during this time interval the texture is considered to be 

completely correlated). 

The results for a different number of steps N that have been obtained for a single range 
cell from each analysed data set are presented in Figures 46-48. It can be seen that the 
normalised texture ACFs corresponding to 64-, 128-, and 256- point estimates of yt 

have very similar values to each other. 

In contrast, the normalised texture ACFs corresponding to 1024- and 2048-point 
estimates of yt exhibit quite different shape. This means that the durations of 1024 and 

2048 samples exceed the invariability time. 

Figures 49-51 present the texture normalised temporal covariance functions of a single 
range cell from each analysed data set. They illustrate periodic variations of the mean 
clutter level with the look direction angle relative to the wind/swell direction change 
that were observed during the data collection. The autocovariance function is 
determined as 

£y M=?S & ~ yXyM -y)=*, M- y2 P-
30

) 
1 i=i 

where y  is the texture mean value given by 
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Figure 43: Speckle temporal correlation function for an azimuth line from run22886 data set 
[Im(TACF)-green, Re(TACF)- red]. 
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Figure 44: Speckle temporal correlation function for an azimuth line from run22884 data set 
[Im(TACF)-green, Re(TACF)- red]. 
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Figure 45: Speckle temporal correlation function for an azimuth line from run22885 data set 
[Im(TACF)-green, Re(TACF)- red]. 
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Figure 46: Texture temporal correlation function for run22886 data set [N=64 - yellow, N=128 
- green, N=256 - blue, N=512 - red, N=1028 - black, N=2048 - cyan]. 
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Figure 47: Texture temporal correlation function for run22884 data set [N=64 - yellow, N=128 
- green, N=256 - blue, N=512 - red, N=1028 - black, N=2048 - cyan]. 
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Figure 48: Texture temporal correlation function for run22885 data set [N=64 - yellow, N=128 
- green, N=256 - blue, N=522 - red, N=1028 - black, N=2048 - cyan]. 
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Figure 49: Texture temporal covariance function for run22886 data set LN=64 - yellow, N-128 
- green, N=256 - blue, N=512 - red, N=1028 - black, N=2048 - cyan]. 
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Figure 50: Texture temporal covariance function for run22884 data set [N=64 - yellow, N-128 
- green, N=256 - blue, N=512 - red, N=1028 - black, N=2048 - cyan]. 
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Figure 51: Texture temporal covariance function for run22885 data set [N=64 - yellow, N-128 
- green, N=256 - blue, N=512 - red, N=1028 - black, N=2048 - cyan]. 
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11=1 

(3.31) 

The longest texture temporal correlation with a period of about 11 sec corresponds to 
the upwind/upwind look direction (run22886) presented in Figure 49. The wide 
azimuthal beamwidth tends to filter out waves travelling perpendicular to the radar 
line of sight via the interference of the returns from multiple independent scattering 
centers associated with the train of waves falling within the radar footprint. The 
correlation period of 11 sec is in complete agreement with the observed swell period 
(Table 2). The periodic variation of the mean clutter level due to a heavy sea swell is 
evident. 

The texture temporal correlation period of about 3 sec corresponds to the cross- 
swell/cross-wind look direction (run22884) presented in Figure 50. Across the swell, 
only structure larger than the radar cross-range resolution is resolved in time as the 
swell moves through the beam. 

The temporal correlation period of about 7 sec corresponds to the intermediate look 
direction (run22885) presented in Figure 51. The relatively wide cross-range footprint 
of the radar in this case included a mixture of crests and troughs. 

3.4.1.2.3 Comparison of Model - Based and Nonparametrically Estimated Intensity 
Temporal Autocorrelation Functions 

Figures 52-54 present the results of comparing the clutter intensity normalised 
temporal ACF obtained using the compound K-distribution model that is described by 
equations (3.25) - (3.29) with the overall normalised temporal ACF nonparametrically 
estimated from a single range cell data z[n] for each analysed data set. 

These normalised temporal ACFs are presented for two time scales: the ACFs relative 
to the first 18 ms are enlarged at the top of Figures 52-54. 

It can be seen that the model-based and nonparametrically estimated normalised 
temporal ACFs of the sea clutter intensity are very similar to each other for each 
analysed data set. The peak due to speckle correlation is evident. 

3.4.2 Spatial Correlation Properties 

In this section of the report the results of analysis of the spatial correlation properties of 
sea clutter are presented for each analysed data set. 

The spatial correlation of sea clutter is defined as the cross-correlation between the 
signals returned from two separate patches of the sea in the radial dimension. The time 
interval separating the measurement of these two signals is assumed to be so small that 
there is negligible time decorrelation. 
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Figure 52: Intensity temporal correlation function for an azimuth line from run22886 data set 
[model-based - green, nonparametrically estimated - red]. 
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Figure 53: Intensity temporal correlation function for an azimuth line from run22884 data set 
[model-based - green, nonparametrically estimated - red]. 
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Figure 54: Intensity temporal correlation function for an azimuth line from run22885 data set 
[model-based - green, nonparametrically estimated - red]. 

Spatial correlation of sea clutter reflected signals is a well known phenomenon [6, 11, 
20, 36, 38, 42], caused by the relation of the sea clutter modulating process to the 
surface profile of the sea. While microwave signals are primarily scattered by capillary 
waves of the sea (speckle), the undulating structure of the sea gravity waves causes 
variations of the mean power scattered from a given patch (modulating process), 
which are mechanistically explained in terms of bunching of contributing scatterers 
and local tilting of the sea surface slope. Therefore, it is reasonable to assume that the 
degree of correlation of the modulating process between resolution cells depends on 
the spatial correlation of the sea surface, and that this process has a decorrelation 
distance of the same order of magnitude as the decorrelation distance of the sea. 

It is also clear, that in well-developed swell conditions, a periodic component will be 
present in the spatial ACF of the modulating process. Concerning the correlation 
properties of the speckle, it is necessary to note that for a given realisation of the large 
scale structure, the small scale features at two separated patches are usually 
uncorrelated. Therefore, the speckle is assumed to be entirely decorrelated from one 
range cell to the next. 

3.4.2.1  Coherent Spatial Analysis 

The spatial ACF of the overall disturbance z (3.17) that consists of two components 
((3.18) and (3.19)) with different range correlation length is the product of the ACFs of 
these two components: 
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Sfi] = E{z[k]z*[k+l]}= S^[l]Sx[l]=2S^[l](sxi [l)+jSXiX& [/]) (3.32) 

where x, [k] and xQ [k] are Gaussian-distributed I and Q components of the speckle in 

the k -th range cell. 

Therefore, the range correlation length of the coherent signal is equal to that of the 
faster changing range component. In order to demonstrate this fact, the spatial ACF of 
the overall disturbance z was estimated for a single time correlation period of the 
underlying mean clutter level in each analysed data set. This was done by using L = 
256 consecutive range lines of K = Kcells complex samples (where Kcells is the number 

of range cells in one range line): 

sM = ^i%nMz:[k + l) = 2(szi[lhjSZiZQ[l}) (3.33) 
ÄL „=1  k=Q 

where z,\k\ and zQ[k] are the I and Q components and z[k] is the complex envelope 

of the observed signal from k -th range cell. 

Figures 55-57 present these estimated normalised spatial ACFs of the sea clutter returns 
for the analysed experimentally collected data sets. It can be seen that the range 
correlation length of the coherent disturbance is less than the radar range resolution. 
(Note that the original data were sampled at intervals smaller than the radar 
resolution). It corresponds to the spatial correlation properties of the speckle 
component of the sea clutter disturbance, which is uncorrelated in range. It is also 
evident that there is no cross-correlation between I and Q components of the sea clutter 
return. 

Therefore I and Q components of the overall coherent disturbance are spatially 
independent as are I and Q components of the speckle. 

3.4.2.2 Incoherent Spatial Analysis 

Using the same approach as for analysis of the temporal correlation properties of two 
components of sea clutter returns, separate estimation of the spatial correlation of these 
two components has been achieved by analysis of the incoherent signal, i.e. the 
squared amplitude of the coherent signal: 

l[k]=\z[k}\2=y[k]  {x2[k]+x2
Q[k]) (3.34) 
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Coherent sea clutter signal spatial ACF (run22886ds.mat) 
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Figure 55: Sea clutter returns spatial correlation function for run22886 data set /1 SACFI 
yellow, Im (SACF) -green, Re (SACF) - red]. Grazing angle 1.14 °, upwind look direction. 
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Figure 56: Sea clutter returns spatial correlation function for run22884 data set [ I SACF I 
yellow, Im (SACF) -green, Re (SACF) - red]. Grazing angle 2.37°, cross-wind look direction. 
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Figure 57: Sea clutter returns spatial correlation function for run22885 data set [ I SACF I - 
yellow, Im (SACF) - green, Re (SACF) - red]. Grazing angle 0.59°, intermediate look direction 
135°. 
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Then the spatial ACF of this incoherent signal is determined by 

5,1/1 = 5, [/]  (lE{xj [k]xj[k + /]}+ E{X][k\x2
Q[k + /]}+ E{x][k + l]x2

Q[k]}) (3.35) 

If x,[k] and xQ[k] are jointly Gaussian processes with unit variance and zero mean 

then the incoherent signal spatial ACF is given by 

5/[m] = 45>]+25>]5£>]+25>]5^>] (3-36) 

It is evident that the first part of the overall spatial correlation is dominated by the fast 
changing range component (short-term). This component is uncorrelated from one 
range cell to another. 

After a single range sample interval, the range correlation is dominated by the long- 

term component, because 5^ [m] = Sx,xQ M - 0 /tnat is 

5,[m] = 45>] (3-37) 

If the amplitude of the disturbance can be modelled by a K-distribution then the spatial 
ACF of the intensity is given by equation (3.36). Therefore, further proof of the validity 
of the K-distribution model can be obtained by comparing the nonparametrically 
estimated spatial ACF of the intensity with the ACF parametrically estimated 
according to equation (3.36) as it was done for the temporal ACF of the sea clutter 
intensity. 

3.4.2.2.1  Speckle Spatial Correlation Properties 

As was shown by the analysis of Figures 30-32, texture in a single range cell can be 
considered constant over short time intervals. The spatial ACF of the speckle 
component can be estimated using coherent signal samples from consecutive range 
cells in a number of range lines during such a short interval. Data bursts of K = Kcelh 

spatial samples have been considered and following estimators with L~ 256 data block 
have been used to estimate the I and Q speckle components spatial autocorrelation and 
cross-correlation functions: 

1     p    [y    Zn[k]       fn[k+l] (3.38) 
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1 JK^1 zn[k]   zl[k+l] 
2K   I a VSH V^^+i] 

(3.39) 

For each range cell the texture value y has been estimated from the same data using 
equation (3.20) with N = 256. 

The resulting speckle components normalised spatial auto- and cross-correlation 
functions for a single range cell from analysed data sets are presented in Figures 58-60. 
It can be seen that these functions are in complete agreement with those plotted in 
Figures 55-57. 

3.4.2.2.2 Texture Spatial Correlation Properties 

To estimate the texture ACF, the approach proposed in [40] was used. Each point in 
range was averaged by integrating successive temporally decorrelated returns from the 
same range in order to remove the speckle component of the clutter and yield / profiles 

of the mean clutter level ^y }[k\, k =1,... , K, j =1,..., /. The integration period was 

chosen to be short compared with the correlation period of the texture (N = 256 - 
during this time interval the texture was considered to be completely temporally 
correlated): 

4m N uncor    n=\ 
>-M (3.40) 

where N.. 
N 

N decor + 1 
is the number of temporally uncorrelated samples in the 

integration period; N is the total number of samples in the integration period; Ndecor is 

the temporal correlation length of the texture, expressed in radar temporal samples, 
which is equal to 0 if the samples are temporally uncorrelated; and Zj<k [n\ is the n -th 

complex temporally independent clutter sample from k -th range cell in; -th profile. 

Figures 61-63 present typical plots of these range profiles of the mean clutter level for 
the analysed data sets. 

The data in Figure 61 was obtained looking upswell/upwind with a grazing angle of 
1.14° and at a range of 9.2 km. The range profile shows a strong periodicity with range, 
which reflects the long wavelength sea swell that was observed at the time. The wind- 
generated waves on the top of swell have a period of about 15 m that is in agreement 
with observation data presented in Table 2. 

The data in Figure 62 was collected under the same sea conditions but with a grazing 
angle of 2.37°, a range of 4.4 km and looking cross-swell/cross-wind. This data exhibits 
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Figure 58: Speckle spatial correlation junction for run22886 data set [Im (SACF)- green, Re 
(SACF)- red]. 
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Figure 59: Speckle spatial correlation function for run22884 data set [Im (SACF)- green, Re 
(SACF)- red]. 
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Figure 60: Speckle spatial correlation function for run22885 data set [Im (SACF)- green, Re 
(SACF)- red]. 
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Figure 61: Typical range profile of clutter mean level for run22886 data set (upwind/upswell). 
Grazing angle 1.14°. 
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Figure 62: Typical range profile of clutter mean level for run22884 data set (cross-wind/cross- 
swell). Grazing angle 2.37°. 
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Figure 63: Typical range profile of clutter mean level for run22885 data set (intermediate look 
direction). Grazing angle 0.59 °. 
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a much smaller variation about the mean, as expected with the larger grazing angle 
and cross-swell viewing direction. 

The data in Figure 63 was obtained looking at the intermediate direction (135°) relative 
to the wind/swell direction with a grazing angle of 0.59° and at a range of 17.5 km. The 
range profile shows a very strong periodicity due to a heavy swell that was observed 
during the data collection period. 

The texture value at each range was estimated by squaring the data from (3.40). Then 
the texture spatial ACF was obtained by averaging the spatial ACFs of a number (J) of 
successive profiles: 

JA j=l JA 7=1 k=l 

The first 40 terms of the normalised spatial ACFs of the analysed data sets, estimated 
according to (3.41), are shown in Figures 64-66. It can be seen that data sets which were 
collected in the upswell/upwind (Figure 64) and intermediate relative to the 
swell/wind (Figure (66) look directions are characterized by much longer range 
correlation length compared to that for the data set that was collected in the cross- 
swell/cross-wind look direction (Figure 65). As the spatial correlation properties of the 
texture reflect the dynamics of the sea surface, it is reasonable to assume that they are 
independent of grazing angle. 

Figures 67-69 present the texture normalised spatial covariance functions of the 
analysed data sets to better illustrate periodic variations of the mean clutter level with 
the look direction angle relative to the wind/swell direction change that were observed 
during the data collection. The autocovariance function is determined as 

JK j=\ k=\ J y=i 

where y •  is the texture mean value in ;' -th range profile given by 

yj^tyjlk] (3-43) 
K jt=i 

The first 40 terms of the averaged normalised range covariance function for the three 
analysed data files are shown in Figures 67-69. It can be seen that the form of this 
function is different in each case. Data files run22886 and run22885 (Figures 67 and 69) 
contain clutter with a long periodic fluctuation due to a heavy swell, while at the other 
extreme, file run22884 (Figure 68) represents clutter with little spatial correlation. 
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Figure 64: Texture spatial correlation function for run22886 data set (upwind/upsivell). 
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Figure 65: Texture spatial correlation function for run22884 data set (cross-wind/cross-swell). 
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Figure 66: Texture spatial correlation function for run22885 data set (intermediate look) 
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Figure 67: Texture spatial covariance function for run22886 data set (upwind/upswell). 
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Figure 68: Texture spatial covariance function for run22884 data set (cross-wind/cross-swell). 
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Figure 69: Texture spatial covariance function for run22885 data set (intermediate look 
direction). 
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Looking into the swell (Figure 67), the radar resolves structure larger than the 1.5 m 
that corresponds to the radar range resolution. Therefore, in this case range correlation 
uncovers the structure of the sea surface (the spatial ACF clearly shows the presence of 
wave structure). Across the swell (Figure 68), the wide cross-range footprint of the 
radar is aligned perpendicular to the incoming swell and there is a suppression of 
wavelike patterns travelling parallel to the radar line of sight. In the case of the 
transmit geometry with intermediate look direction (Figure 69), the relatively wide 
cross-range footprint of the radar is no longer perfectly aligned perpendicular to the 
incoming swell, and thus, with wavelengths on the order of tens of meters, includes a 
mixture of crests and troughs. 

It was shown [41] that for a fully developed sea the correlation length p of the sea 
surface in the range direction is taken to be a length characteristic of wind waves, given 
in terms of wind velocity Wv and g, the acceleration due to gravity and it can be 
determined as: 

2   g 
(3.44) 

where 6 is the angle between the line of sight and the wind direction. 

If the radar range resolution is AR, the correlation length, expressed in radar range 
samples (the number of samples after which the clutter may be said to be significantly 
decorrelated) is 

= P/o 0.45) Kor   ~ 'AR 

Table 17 presents the measured values of correlation length of the sea surface in the 
range direction, expressed in radar range samples, and the corresponding values 
calculated using (3.44) - (3.45) for a fully developed sea and the given radar range 
resolution (1.5 m). 

Table 17: Spatial correlation of sea clutter. 

Run 
ID 

Look direction 
angle 

relative to the 
wind direction 

Correlation 
length 

predicted, 
p{m) 

Predicted 

R = P/ K     A/?' 
AR = l.5m 

Correlation 
length 

measured, 
Pm (m) 

Measured 

R   =pm/ 

AR = l.5m 

22886 0 9.69 6 11.25 7 

22884 270 4.85 3 5.25 3 

22885 135 7.67 5 15.75 10 

The comparison of measured and predicted spatial correlation lengths for a fully 
developed sea indicates that the analysed data were collected under conditions of 
changing wind speed before the wind-generated waves were fully developed. This 
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observation is in agreement with the data presented in Section 2.4. The difference 
between measured and predicted sea spatial correlation lengths is largest for run22885 
data set. It can be explained by a particular heavy swell that was observed during this 
data collection period. 

3.4.2.2.3 Comparison of Model - Based and Nonparametrically Estimated Intensity 
Spatial Autocorrelation Functions 

Figures 70-72 present the results of comparison of the clutter intensity normalised 
spatial ACF obtained by using the compound K-distribution model that is described by 
equations (3.35) - (3.39) with the overall normalised spatial ACF nonparametrically 

estimated from a single range profile data z[n] for each analysed data set. 

It can be seen that the model-based and nonparametrically estimated normalised 
spatial ACFs of the sea clutter intensity are very similar for each analysed data set. The 
peak due to speckle correlation is evident. 

3.5 Spectral Analysis 

The high-resolution radar interrogates only a limited portion of the long-wave surface, 
but the signal is still the sum of a large number of returns due to the capillary waves. 
Ocean radar scattering at small grazing angle generally yields Doppler spectra with a 
peak in the W returns near the Bragg resonant frequency but skewed toward higher 
frequencies. On the other hand, the HH Doppler spectra generally show a peak at a 
much higher frequency than the W peak frequency, but skewed toward lower 
frequency. At small grazing angles, in addition to Bragg scattering, the returns are also 
strongly influenced by scattering from fast events (probably from wave crests of longer 
waves), which occur sporadically in time. The scattering can thus be "lifetime 
dominated" as well. 

These results provide compelling evidence that several entirely different physical 
mechanisms, corresponding to different features of the dynamic sea surface, actively 
contribute to microwave backscatter returns. According to the latest research [27, 28 - 
31, 49], the mechanisms are: 
• Scattering from free Bragg waves, characterized by a Gaussian distribution in 

scatterer speeds and a Gaussian component in the power spectral density (PSD), 
• Scattering from sporadically-appearing, fast moving, short lifetime, facet-like 

scatterers, characterized by an exponential distribution in scatterer lifetime and a 
Lorentzian component in the PSD, 

• Scattering from fast scatterers, which have a spread in speeds, characterized by a 
convolution of the Gaussian and Lorentzian processes, resulting in a Voigtian 
component in the PSD. 

Therefore, it can be accepted that the return from the moving sea surface is a result of 
the interaction of different types of returns from a large number of individual scatterers 
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Figure 70: Intensity spatial correlation function for run22886 data set [model-based - green, 
nonparametrically estimated - red]. 
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Figure 71: Intensity spatial correlation function for run22884 data set [model-based - green, 
nonparametrically estimated - red]. 
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Figure 72: Intensity spatial correlation function for run22885 data set [model-based - green, 
nonparametrically estimated - red]. 
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distributed over the area of the sea surface within the range cell being considered. As a 
consequence, the number of scatterers, or equivalently, the received power, is not 
constant, but depends upon both the electromagnetic and the geometric (the 
orientation of the scatterers with respect to the radar antenna) characteristics of the 
illuminated patch. 

3.5.1 Frequency-Time Analysis 

The geometry of the surface is space and time varying and a fixed orientation of the 
scatterers from observation to observation is not reasonable in general [46]. Thus, 
although the total number of scatterers can be fixed once and for all, only a random 
fraction K(t) of these are effective, in the sense that they produce a nonzero return. The 
number of scatterers K(h) and K(t2), measured at two time instants h and h are 
correlated; in other words, K(t) does not simplify either to a sequence of independent 
random variables or a constant function. It can be shown [46] that the discrete random 
variate K(t) can be presented as having the compound-Poisson distribution that arises 
from a random Poisson sum of independent variates. 

Transmitting a sinusoid signal, the echo from K(t) scatterers located at positions rk (t) 

at the sea surface within a range cell can be presented as 

K«) 

c 

KJl? \      47T rk (t) 
sAt)=^Mt)s t-^^\ = cxp{j2^f0t}^Ak(t)cxp\-j^—\        (3.46) 

k=\ 

where Ak(t)<\ is the amplitude reduction factor due to scattering and propagation 

losses, c is the speed of light and X is the radar wavelength. 

When transmitting a chirp  signal, a similar expression can be written for each 
frequency component in the transmitted chirp. 

The time-varying distance between the radar and the k-th scatterer on the sea surface 
rk(t) (k=l, ..., Kit)) can be approximated as 

rk(t) = r0c{t)+vykt + - 
f 2   \ 

ayk+ — 

V 0c J 

t2+ — clxkVxkt'+L2
xkt

4
+... (3.47) 

2r, 0c 

where r0c(t) is the distance between a radar and a range cell, vyk is the radial velocity 

of the jfc-th scatterer, ayk is the fc-th scatterer radial acceleration, v^ is the fc-th scatterer 

cross-range velocity, axk is the k-th scatterer cross-range acceleration. 
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The phase of the overall clutter response (3.46) is determined by the vector sum of 
returns from a large numbers of ever-changing reflectors with different motion 
parameters on a patch of the sea surface. 

Using (3.46) the received signal from each range cell on the sea surface after 
demodulation is given by 

*"(') = X^COexp \-j j—\ + n{t) (3.48) 

An essential point to note is that the spectrum of sea clutter is likely to vary quite 
significantly with range, associated with the spatial variation of the underlying mean 
level [50]. Analysis of experimentally collected sea clutter data [29, 31, 36, 48, 49] has 
shown that the form of sea clutter spectrum is predominantly determined by the swell 
structure in the sea surface and additionally affected by the presence of local discrete 
events of various forms on the sea surface that change velocity with time. There are 
several explanations for this velocity change: 

• A physical velocity  change  could  arise  from a wave changing  through 
acceleration by a wind gust; 

• An event could be compound. For example, a ripple travelling upon a large 
wave; 

• The event could expose a different velocity component of itself by breaking; 
• The radar could show some transition between imaging two different events of 

differing velocity. 

It is reasonable to assume that several events are occurring simultaneously at different 
velocities due to extent of the range cell. Therefore, the normalised form of the sea 
clutter spectrum is not constant, but has a range and time variable shape and Doppler 
shift. 

The instantaneous Doppler frequency (IDF) of the clutter reflected signal (3.48), 
assuming that the derivatives of the amplitude terms are negligible, is determined as 
[47] 

K(t) K(t) , v 

£ K (02 fh (0 +     t qkJ (t)(f,k (/) + ftj (0) 
f. (t) = i=! kj^j]  (3 49) 

KU) K(t) 

1A* it)' + ^<lk. /(') 
k=\ k j=^*A 

where 

ft (t) = *i-i is the Jt-th scatterer IDF;   qk . (0 = A ■ (t)Ak (t) cos  f^- ^— 
' A    dt ' A A V / 

Hence, it is necessary to estimate the sequence of sea clutter Doppler spectra as it 
changes with range and time. 
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The consecutive "instantaneous" Doppler spectrum estimates can be calculated from 
sequential and possibly overlapping segments of the sampled backscattered signal, 
which correspond to the returns from a single range cell over many consecutive pulses 

[37, 47]. 

Thus, the short-time Fourier transform (STFT) algorithm estimates the sea clutter 
Doppler spectrum as it varies with the sliding window sample number in the signal 

sequence (kw)'- 

FmK(kw,lF) = ^w,llH(n,kw)u(n)cxpl-j   ,        (3.50) 
II = \ t 

lF=l, ...,N;kw=\,...,Kw; wR=l, ...,MR 

where Kw is the number of N point sliding windows along the signal time sequence in 
a range bin; MR is the number of range bins; u(n) is the N point symmetric Harming 

window and wm (n, kw) is the 77-th pulse complex signal in a kw -th sliding window. 

The discrete variable, h , is related to frequency (in Hz) by the following expression: 

f = 
1
F 

-1 (3.51) 

where Ts is the PRI. 

For N clutter returns in each sliding window the energy of the 'instantaneous' 
spectrum is distributed over several contributing components and, hence, the STFT 
provides a relatively wide spectrum with a peak value at the dominant component 
IDF, the value of which changes with time (i.e. with the sliding window sample 

number). 

To confirm this statement for the experimental sea clutter data collected during the 
ESRL 38/97 trial, the STFT analysis was applied to the sea clutter signals reflected from 
a single azimuth line (range cell) of the following data sets: 

• run22886 that corresponds to the upswell/upwind look direction, 
• run22884 that corresponds to the cross-swell/cross-wind look direction, and 
• run22885 that corresponds to the intermediate look direction, respectively. 

The short-time Fourier transforms (STFTs) in each range cell were observed over short 
time periods (N =128 pulses sliding window with 75% overlap). 

Figures 73 - 75 present the results of the STFT analysis for a single range cell from each 
considered data set. It can be seen that the energy within the return is spread out over a 
large portion of the spectrum and the position of the maximum peak value changes 

with time. 
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Frequency-Time plot of Azimuth Line 24 (run22886ds.mat) 

Magnitude 

Figure 73: Frequency-time analysis for a single range cell from rwi22886 data set. 
Frequency-Time plot of Azimuth Line 43 (run22884ds.mat) 

Magnitude 

Figure 74: Frequency-time analysis for a single range cell from run22884 data set. 

Frequency-Time plot of Azimuth Line 12 (run22885ds.mat) 
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Figure 75: Frequency-time analysis for a single range cell from run22885 data set. 

61 



DSTO-TR-1236 

Figures 76 - 78 present the results of the STFT frequency-time analysis for the data sets 
run2286, run2284 and run2285, respectively: 

f,(kw,mR) = \ogK)[max{FmK(kw,lF)JF=l,...,N\) (3.52) 
'F 

It can be seen that the peak values of 'instantaneous' transforms performed by using 
returns from range cells containing sea clutter over many consecutive pulses change 
considerably, and this change corresponds to the large scale structures of the sea 

surface. 

Two additional conclusions that can be drawn from the frequency-time analysis of the 
collected spiky VV-polarised sea clutter data are similar to those presented in the 
literature for sea clutter at low grazing angles and high range resolution [5, 6,10,15, 29, 

38]: 
• During the periods of strong radar returns associated with spiky sea clutter at 

low grazing angles and high range resolution, the power spectrum exhibits a 
characteristic significant high frequency component. 

• It appears to be a correlation between the overall magnitude of a spatially and 
temporally extended spiking event, and how high in frequency the significant 
high frequency spectral components are found. 

3.5.2 Averaged Doppler Spectrum Analysis 

It was shown [27 - 31, 49] that the averaged Doppler power spectrum <£>vv (/) for sea 

clutter signals having VV polarization, (and verified in our collected data), at small 
grazing angles is often asymmetric and can be well fitted by a dominant Gaussian 
component, representative of Bragg scattering, peaked at a low frequency and an 
unresolved Voigtian component at a somewhat higher frequency: 

4>w{f)=BfOB{f)+F9F{f)t (3.53) 

where B f and F indicate Bragg and faster-than-Bragg components, respectively. The 

coefficient Bf is set using the composite surface Bragg scattering model [27, 29], and 

the coefficient F describes the relative strength of the non-Bragg contribution that 
moves at the phase speed of the "most-likely to break" waves. (Note that the "most- 
likely to break" waves are not the dominant waves of the ocean wind-wave spectrum 
as it is for the wavetank experiments [29, 31, 49]). 

An important consideration in the X-band range of frequencies is that sea spike 
coverage at low grazing angles and high range resolution depends to a large extent 
upon surface features not yielding whitecap signatures. The majority of radar sea 
spikes do not correspond to whitecaps, but to small, "steep" features. 
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Frequency-time analysis (run22886ds.mat) 
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Figure 76: Frequency-time analysis for nm22886 data set (logw intensity scale). 
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Frequency-time analysis (run22884ds.mat) 
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Figure 77: Frequency-time analysis for run22884 data set (logw intensity scale). 
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Figure 78: Frequency-time analysis for run22885 data set (logw intensity scale). 
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Thus, for the upwind look direction in conditions of a fully developed sea the sea spike 
fractional coverage (i.e. the average fraction of radar image pixels occupied by sea 

spike events) varies approximately quadratically with the friction velocity u* [32]. 

The value of coefficient F depends on the angle of the look direction relative to the 
wind direction: it is highest for the upwind look direction and equal to zero for the 

cross-wind look direction [29]. 

The Doppler power spectra of the Bragg component having a Gaussian lineshape, and 
the faster-than-Bragg component having a Voigtian lineshape that is characterized by a 
convolution of the Gaussian and Lorentzian profiles [28-30], are described as: 

*/,(/) = 
!BW^

K 

exp (f-fsf 
fi BW 

(3.54) 

<M/): 

2*7, 
exp (-r) 

PW    -oo 

pw 

+ r 
-dy, 

V 
(3.55) 

2*/, PW 

where fB and fP are the frequencies corresponding to the Bragg resonant wave speed 

and the "most-likely to break" wave phase speed, respectively; fBW and fPW are the 

Doppler spectrum widths of each of the spectral components; F"1 is the characteristic 

scatterer lifetime. The widths of each of the spectral components fBW and fPW in 

equations (3.54) and (3.55) are left as free parameters to be varied to get the best fit to 

the data. 

The composite surface theory can describe the scattering processes of the slow (Bragg) 
portion of the Doppler spectrum. This theory decomposes a rough air-water interface 
into small-scale and large-scale features. Small-scale features may be highly irregular 
but are assumed to have small slopes and displacements. The irregular nature of this 
small-scale structure causes it to decorrelate very rapidly in time and space so that 
small segments, or facets, of this surface may be considered individually. Large-scale 
features are assumed to have curvatures small compared to the inverse of the small- 
scale decorrelation length so that they may be considered planar over these scales. 
Small-scale slopes and displacements are all measured relative to this large-scale 
surface. Thus the large-scale surface displaces correlated segments of the small-scale 
features, tilts them, and possibly changes their amplitude. Furthermore, any currents 
associated with the large-scale surface affect the segments of small-scale surface like 
corks floating on the large-scale surface [35]. 
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Under these hypotheses, microwave scattering occurs because of resonant Bragg 
scattering from capillary (small-scale) waves on the water surface. For backscatter, the 
resonant condition is: 

AB= — *—, (3.56) 

where A B is the short, Bragg-resonant wave responsible for the scatter, and 0S is the 

radar local grazing angle. Typical patterns from microwave antennas illuminate areas 
of ocean surface, which are large compared with A B in both dimensions. In these 
conditions, only short waves propagating rapidly toward or away from the antenna 
backscatter to the antenna [35]. 

Then the phase speed of the water wave associated with the underlying water level is 
deternined via the gravity-capillary dispersion relation as 

c*=jf + -*" (357) 
\kB     p 

An cos#p ,       . L ■    LU 
where    kB -is   the   Bragg-resonant   wavenumber   in   water,   g   is   me 

A 
gravitational  acceleration,   y    and p  are  the  water  surface  tension and  density, 
respectively. 

The standard equation for the Doppler shift, fD, induced in backscattered microwaves 

due to surface moving with a line-of-sight velocity vR toward or away from the 

antenna is: 

/D=^, (3-58) 

where A is the microwave free space wavelength. 

If the scattering is a Bragg-resonant phenomenon, then the line-of-sight velocity vR is 

composed of the sum of the line-of-sight velocity of the aircraft antenna va , any large- 

scale, line-of-sight velocities of the sea surface movement V and the component of the 
intrinsic phase speed, cBp , of the Bragg wave along the line of sight. 

Note that if during the data collection process the distance from the aircraft to the 
swath was kept constant for each run, the line-of-sight velocity of the aircraft antenna 
va would be equal to zero for all runs as the antenna was pointed at -90° relative to the 
direction of aircraft movement (see Section 2.5). But the surface range to the swath and 
the aircraft altitude above the earth surface varied pulse-to-pulse due to deviation of 
the aircraft from the ideal track. Therefore the line-of-sight velocity of the aircraft 
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antenna va has to be calculated using the values of these parameters that can be read 

from the auxiliary data exactly for each pulse. 

It was shown [29, 31, 49] that the free Bragg waves are generated after the wave has 
broken. They are located near the crest of the broken gravity wave and are strongly 
affected by the orbital motion of the underlying gravity waves, i.e. small Bragg 

resonant ripples are modulated by the drift velocity of the dominant gravity waves cd. 

For open waters, a form for this component, which has been found to successfully 
describe the experimental data for upwind look direction, is the solution to the Stokes 

equation [27]: 

H 
cd = QK 

2 s'mh - Kd 

2K 

V2J 

cosh 2Kd ,~ rm 

where K =  is the wavenumber of the dominant gravity waves in the wind-wave 
Ä ■ d 

field, X d is the wavelength of the dominant gravity waves, Q. is the angular frequency 

of the dominant gravity waves, H is their trough to crest height and d is the water 
depth. Research has shown that a good approximation to this drift is 2.6-5.5% of the 

wind speed [29]. 

Thus, for constant large-scale currents, or none at all, the overall speed of the Bragg 
scatterers is given by 

cB=V±cBp=cd±Cl±cBp, (3.60) 

where and c\. is the current velocity (that is assumed to be zero). 

Therefore, the measured Doppler frequency of the low-frequency peak of the VV 
polarization Doppler spectrum corresponding to the Bragg resonant wave speed can be 
presented for the upwind look direction as [29] 

(/„„„. I, „ = /. =^(v. ±c) = ^k ±(c„ ±, ±c J.    «3,,, 

We can obtain an approximation to the corresponding "slow"peak Doppler frequency 
dependence on the look direction relative to the wind direction using the results of 
research presented in [36, 43], which show that sea clutter data for both polarizations 
has a cosinusoidal dependence on the direction of the wind, with the smallest Doppler 

offset when looking across-wind. 

Then the "slow"peak Doppler frequency is determined as: 

/„ .(0)=f.ifl)=^-lv.±c,(e)]=^^[v.±c^±(cj±cr)c«el(^t 
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where 9 is the angle between the line of sight and the wind direction. 

Thus a microwave Doppler spectrum due to Bragg backscattering is expected to exhibit 
2 cos#   , ,   .. 

two peaks located at fB{0) = —±-{va±cB{0)) corresponding to Bragg waves 
A 

travelling toward or away from the antenna. 

It is essential to note that at small grazing angles the rough sea state renders these 
peaks unresolvable in the X-band sea clutter spectrum: 

• For the upwind look direction and wind speeds above ~ 6 m/s, the contribution 
due to receding Bragg waves is not usually observed, and only the "slow" peak 
corresponding to approaching Bragg waves is prominent [31]; 

• For the cross-wind viewing direction, the peak maybe slightly upshifted or 
downshifted from the "reference frequency" va depending on whether 

approaching or receding Bragg waves, respectively, are dominant in 
contributing to the backscatter return [29]. If both approaching and receding 
Bragg waves are equal, then the appropriate broadening of the Doppler 
spectrum about the "reference frequency" va is observed. 

Analysis of the ocean scattering data at microwave frequencies has indicated that the 
faster-than-Bragg portion of the Doppler spectrum at small grazing angles is due to the 
breaking water waves that are the source of non-Bragg nature fast scatterers. It was 
shown [29, 31, 32,49] that: 

• For cross-wind viewing directions, the "slow" and "fast" peak separation does 
not occur for low grazing angles; i.e., both the VV and HH spectra peak at more 
or less the same low frequency corresponding to the Bragg resonant wave 
speed and the high-frequency peak of the Doppler spectrum is not observed; 

• The surface geometry of a breaking wave contains scattering elements that can 
provide not only specular-like reflection from curved water facets, but also 
multiple scattering, which may or may not include a reflection at the Brewster 
angle; 

• The crest region of the breaking waves is the principal source of the non-Bragg 
scattering phenomena. The high-frequency peak of the Doppler spectrum 
corresponds to the scattering from bound-Bragg waves and/or from facets (or 
wedges) and from sporadically appearing, short-duration (life-time dominated) 
"single-speed" objects near the crest region of a breaking wave such as 
nondegenerate facets; 

• The speed of fast scatterers corresponds to the phase speed of a breaking wave 
since fast scatterers are located at the crest portion of a breaking wave; 

• The phase speed of the "most-likely to break" wave associated with the fast 
scatterers grows approximately exponentially with increasing friction velocity; 
and 

• The wavelength of the "most-likely to break" ocean wave is always much 
shorter  than  the   dominant  gravity   wavelength   of  the  ocean   wind-wave 
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spectrum. These shorter gravity waves are "riding" on longer dominant waves, 
and they are modulated by the dominant waves to break. 

Thus, the phase speed of the "most-likely to break" wave for a given wind speed can 

be determined using the approximation proposed in [31]: 

c„ =c0exp 
(u  \ 

y  ° / 

(3.63) 

where: 

w* is the friction velocity that has to be determined from the following equations: 

Wv 

u* ( , ^ 
In 

v*o, 

(3.64) 

0.684 + 4.28*1 (TV -0.0443, (3.65) 

Wv is the wind speed at a height of 10 m, 

Wv and u* both have units of cm/s, 

z is the height above the mean water level in cm, 
k is von Karman's constant (k -0.4), and 
c0 and w() are coefficients, the values of which depend on the friction velocity: 

Cn = 

9.1 cm I s, if    w» < 21 cm I s 

72 cm I s, if    u*>2\cm/s 
'    "o 

5 cm/s, if    u*<2\cmls 
un=i ... _.       . (3-66) 

53 cm/s, if    M*> 21 cm/s 

The "most-likely to break" wavelength can be calculated using the dispersion relation 

[31]: 
_      i 
2n c~ 

JL (3.67) 
*,= 

8 

Comparing (3.57) and (3.66) it can be seen that the Bragg-resonant wavelength is much 
shorter than the wavelength of the waves in the upwind look direction associated with 

the fast scatterers. 

The high-frequency peak fP in the X-band sea clutter Doppler spectrum at small 

grazing angles for the upwind look direction is determined by [29, 31] 

I ■       ) _ 2 cos/9, Lk±(c(/+cJ, (3.68) 
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Note that this peak shifts to higher frequencies with increasing wind speed. 

The approximation to the corresponding "fasf'peak Doppler frequency dependence on 
the look direction relative to the wind direction is given by: 

fDfiJo) = fP(0) = —T
J-k±( cd+cp)cosd] . (3.69) 

Figures 79 - 81 present the Doppler spectra that are averaged over a sliding window 
with N =128 pulses for a single range cell from each analysed data set. 

Figures 82 - 84 show the Doppler spectra that are averaged over a sliding window with 
N =128 pulses for all range cells of the considered data sets. 

The upwind (Figures 79 and 82), intermediate (Figures 81 and 84) and cross-wind 
(Figures 80 and 83) spectral data confirm the fact that sea backscatter is not isotropic 
since waves propagate and also break predominantly in the wind direction. 

For the upwind and intermediate look directions the Doppler spectra are asymmetric 
and cannot be well fitted by only a dominant component centred at the maximum of 
the spectra as they have a smaller unresolved component at a higher frequency. The 
Doppler frequency at the "slow peak" corresponds reasonably well to that given by 
(3.64), with the speed of the scattering object on the water surface matching the phase 
speed of the Bragg resonant water wave. The "fast peak" corresponds to scatterers, 
which move at speed much faster than the Bragg wave speed, and these faster 
scatterers are associated with the phase speed of a "most-likely to break" wave. 

A cross-wind run means that the radar is looking perperdicular to the propagation 
direction of the dominant wave. For the cross-wind look direction, the radar does not 
collect (or very seldom collects) signals reflected by breaking waves and, therefore, a 
prominent fast component does not present in the Doppler spectra. 

Table 18 summarises the results of Doppler spectra analysis for all the considered data 
sets together with environmental and computed data. 

Table 18: The results of Doppler spectra analysis for the considered data sets 

Run ID deg. 

Va 

m/s m/s 

C
P 

m/s 

CBp 

m/s m/s 

Calc. 

J Dslow- 

Hz 

Calc. 

J Dslow+ 

Hz 

Calc. 

JDfast 

Hz 

Meas 

JDslow 

Hz 

Meas 

JDfast 

Hz 
run22886 1.14 -0.8 5.7 1.06 0.23 0.3 -24.80 -53.8 -93.93 -51 -98 
run22884 2.38 -1.4 5.9 1.06 0.23 0.3 -72.96 -101.9 n/o -102 n/o 
run22885 0.60 1.2 6.1 1.06 0.23 0.3 71.19 100.12 132.57 100 135 
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Spectrum of Azimuth Line 52 (run22886ds.mat) 
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Figure 79: Sea clutter spectrum for an azimuth line from run22886 data set. 
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Figure 80: Sea clutter spectrum for an azimuth line from run22884 data set. 
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Figure 81: Sea clutter spectrum for an azimuth line from run22885 data set. 
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Entire image FFTs (dB) (run22886ds.mat) 
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Figure 82: Averaged sea clutter spectra for ruri22886 data set. 
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Entire image FFTs (dB) (run22884ds.mat) 
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Figure 83: Averaged sea clutter spectra for run22884 data set. 
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Entire image FFTs (dB) (run22885ds.mat) 

Magnitude (dB) 

21 

20 

19 

184 

17 

lini ;-/■; 

40 
"^x--^       20 

Frequency (Hz) "400     ° Range (binsj 

Frequency analysis (run22885ds.mat) 

Figure 84: Averaged sea clutter spectra for run22885 data set. 
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Thus, the large-scale wave phenomena, travelling at speeds roughly of the order of the 
predicted "most-likely to break" wave phase speed, and smaller scale wave 
phenomena, travelling at speeds roughly on the order of the predicted Bragg resonant 
wave speed, were observed with an upwind and intermediate transmit geometries. 
The cross-wind viewing geometry provides results that can be effectively described by 
Bragg scattering. 

3.6 Range-Time-Intensity Plot Analysis 

A useful tool in analysing sea clutter both spatially and temporally (for a time scale 
measured in seconds) is the range-time-intensity (RTI) plot [6, 36, 38]. This section of 
the report presents RTI plots of the experimentally collected high-resolution (1.5 m) sea 
clutter data that were taken from a number of consecutive range resolution cells in a 
given direction for an extended period of time (12,26 and 30 seconds for corresponding 
Figures 79 - 81). The squared magnitudes of the resulting time series were summed 
over contiguous blocks of 100 samples. The result is time series with each point 
representing the average clutter magnitude over a 200 msec time interval. The RTI 
plots in Figures 79 - 81 represent the data collected from 92, 56 and 86 contiguous range 
resolution cells, respectively. To illustrate the dependence of the RTI plot structure on 
viewing aspect, which can be explained in terms of the radar footprint, the RTI plots 
are presented for the upswell/upwind (Figure 82), cross-swell/cross-wind (Figure 83) 
and intermediate look (Figure 84) directions. 

The analysed data were collected under conditions of changing wind speed before the 
wind-generated waves were fully developed. As described in Section 2.4, the presence 
of the smaller-scale cross-structure in the form of substreaks within the large-scale 
streaks was observed during the data collection process. These substreaks, which only 
run from side to side of the larger streaks, had steep slopes and hence, smaller speeds. 
Occasional breaking waves on top of swell and froth patches (2 x 3m) on the backs of 
waves contributed to the reflection process. 

For the upwind/upwind transmit geometry (Figure 82) the relatively wide cross-range 
footprint of the radar was aligned with the incoming swell, so that it alternately caught 
the more reflective crests and then the less reflective troughs associated with individual 
waves. Thus, when looking into the swell, the radar resolved structure greater than the 
radar range resolution (1.5 m). On the other hand, the wide azimuthal beamwidth 
tended to filter out those waves travelling perpendicular to the radar line of sight, 
through the interference of the returns from multiple independent scattering centers 
associated with the train of waves falling within the radar footprint [36, 38]. 

For the cross-swell/cross-wind transmit geometry (Figure 83) the wide cross-range 
footprint of the radar was aligned perpendicular to the incoming swell, and a 
suppression of wavelike patterns travelling parallel to the radar line of sight is evident. 
Across the swell, only structure greater than the cross-range resolution is resolved, and 
then not in range but in time as the swell moves through the beam. The cross-swell RTI 
plot is therefore not expected to show the wavelike pattern of the upswell RTI plot. 
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Figure 85: Range-time-intensity plot for run22886 data set (logw intensity scale). 
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Range Time Intensity Plot (run22884ds.mat) 
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Figure 86: Range-time-intensity plot for run22884 data set (logw intensity scale). 
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Range Time Intencity Plot (run22885ds.mat) 
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Figure 87: Range-time-intensity plot for run22885 data set (logio intensity scale). 
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The shorter correlation period but still fairly regular, wavelike pattern of the RTI plot is 
observed for the transmit geometry that was no longer aligned parallel with the wind 
and incoming swell, but which was also not completely perpendicular to them (Figure 
84). The relatively wide cross-range footprint of the radar in this case included a 

mixture of crests and troughs. 

4. Summary 

This report describes the results of detailed statistical analysis of sea clutter data that 
were collected during the ESRL 38/97 trial, which was held off the Northern 
Australian coastline in February 1999. One of the trial's main objectives was to 
contribute to a database of experimentally collected clutter returns with radar system 
parameters that are comparable to those used in the Anti-Submarine Warfare mode of 
the Elta EL/M 2022A(V)3 maritime surveillance radar system. 

The validity of the compound K-distribution model has been proven for the collected 
sea clutter data, both for amplitude and correlation properties. 

It was shown that the K-distribution model provides the best fit to the experimentally 
collected data (of the most popular spiky sea clutter models (Log-Normal, Weibull and 
K-distribution) in the low probability of false alarm region). Among the K-distribution 
parameter estimation methods, the PDF with the parameters using Watts' method 
gives a better fit to the experimental amplitude histogram in the important low PFA 

region than the others. 

As an accurate prediction of the radar detection performance is usually more 
dependent on the accurate modelling of temporal and spatial correlation features than 
on the choice of amplitude distribution [22, 23, 36], it is important that the K- 
distribution model provides proper handling of the temporal and spatial fluctuations 
of the collected sea clutter returns. It was shown that the K-distribution model-based 
and nonparametrically estimated normalised temporal and spatial ACFs of the sea 
clutter intensity are very similar to each other for each analysed data set. 

The spectral analysis of the experimentally collected sea clutter data showed that 
several entirely different physical mechanisms, corresponding to different features of 
the dynamic sea surface, contribute to the spectral characteristics of sea clutter. For the 
upwind and intermediate look directions the Doppler spectra are asymmetric and 
cannot be well fitted by only a dominant component centred at the maximum of the 
spectra as they have a smaller unresolved component at higher frequency. The Doppler 
frequency at the "slow peak" corresponds reasonably well to the speed of the 
scattering object on the water surface matching the phase speed of the Bragg resonant 
water wave. The "fast peak" corresponds to scatterers that move at speeds much faster 
than the Bragg wave speed, and these faster scatterers are associated with the phase 
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speed of a "most-likely to break" wave. For the cross-wind look direction, the radar 
does not collect (or very seldom collect) signals reflected by breaking waves and, 
therefore, a prominent fast component does not present in the Doppler spectra. 

For the successful estimation of the sea clutter characteristics in a process of prediction 
of the performance of the Anti-Submarine Warfare mode Elta EL/M 2022A(V)3 
maritime surveillance radar system in Australian environmental conditions, further 
analysis of the experimentally collected sea clutter data needs to be done in order to: 

• Clarify which mean sea clutter reflectivity model among the existing models [6, 
8, 15, 18, 20, 45] provides the best results for Australian environmental 
conditions; 

• Validate of the existing empirical models \7, 36, 45] for prediction of the K- 
distributed sea clutter shape parameter, which were proposed for a radar with 
the range resolution greater than 4 m and UK or Canadian environmental 
conditions, for the Anti-Submarine Warfare mode range resolution of the Elta 
EL/M 2022A(V)3 radar and Australian environmental conditions. 
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